
Statistics for Linguists:
An Introduction Using R

Statistics for Linguists: An Introduction Using R is the first statistics textbook on
linear models for linguistics. The book covers simple uses of linear models through
generalized models to more advanced approaches, maintaining its focus on conceptual
issues and avoiding excessive mathematical details. It contains many applied examples
using the R statistical programming environment. Written in an accessible tone and
style, this text is the ideal main resource for graduate and advanced undergraduate
students of Linguistics statistics courses as well as those in other fields, including
Psychology, Cognitive Science, and Data Science.

Bodo Winter is Lecturer in Cognitive Linguistics in the Department of English
Language and Applied Linguistics at the University of Birmingham, UK.

15034-2313q-3pass-r02.indd 1 10/3/2019 5:50:37 PM

15034-2313q-3pass-r02.indd 2 10/3/2019 5:50:37 PM

Statistics for Linguists:
An Introduction Using R

Bodo Winter

15034-2313q-3pass-r02.indd 3 10/3/2019 5:50:38 PM

First published 2020
by Routledge
52 Vanderbilt Avenue, New York, NY 10017

and by Routledge
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

Routledge is an imprint of the Taylor & Francis Group, an informa
business

© 2020 Taylor & Francis

The right of Bodo Winter to be identified as author of this work has been
asserted by him in accordance with sections 77 and 78 of the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or
utilized in any form or by any electronic, mechanical, or other means, now
known or hereafter invented, including photocopying and recording, or in
any information storage or retrieval system, without permission in writing
from the publishers.

Trademark notice: Product or corporate names may be trademarks or
registered trademarks, and are used only for identification and explanation
without intent to infringe.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book has been requested

ISBN: 978-1-138-05608-4 (hbk)
ISBN: 978-1-138-05609-1 (pbk)
ISBN: 978-1-315-16554-7 (ebk)

Typeset in Times New Roman
by Apex CoVantage, LLC

15034-2313q-3pass-r02.indd 4 10/3/2019 5:50:38 PM

Contents

Acknowledgments� x
0.  Preface: Approach and How to Use This Book� xii

0.1.	 Strategy of the Book  xii
0.2.	 Why R?  xiii
0.3.	 Why the Tidyverse?  xiv
0.4.	 R Packages Required for This Book  xv
0.5.	 What This Book Is Not  xv
0.6.	 How to Use This Book  xv
0.7.	 Information for Teachers  xvi

1	 Introduction to R� 1
  1.1.	� Introduction  1
  1.2.	� Baby Steps: Simple Math with R  2
  1.3.	� Your First R Script  4
  1.4.	� Assigning Variables  5
  1.5.	� Numeric Vectors  7
  1.6.	� Indexing  9
  1.7.	� Logical Vectors  10
  1.8.	� Character Vectors  11
  1.9.	� Factor Vectors  12
1.10.	� Data Frames  13
1.11.	� Loading in Files  16
1.12.	� Plotting  19
1.13.	� Installing, Loading, and Citing Packages  20
1.14.	� Seeking Help  21
1.15.	� A Note on Keyboard Shortcuts  22
1.16.	� Your R Journey: The Road Ahead  23

2	 The Tidyverse and Reproducible R Workflows� 27
2.1.	� Introduction  27
2.2.	 �tibble and readr  28
2.3.	 �dplyr  30
2.4.	 �ggplot2  34
2.5.	� Piping with magrittr  36
2.6.	� A More Extensive Example: Iconicity and the Senses  37

15034-2313q-3pass-r02.indd 5 10/3/2019 5:50:38 PM

vi  Contents

2.7.	� R Markdown  44
2.8.	� Folder Structure for Analysis Projects  45
2.9.	� Readme Files and More Markdown  46

2.10.	� Open and Reproducible Research  47

3	 Descriptive Statistics, Models, and Distributions� 53
3.1.	� Models  53
3.2.	� Distributions  53
3.3.	� The Normal Distribution  54
3.4.	� Thinking of the Mean as a Model  57
3.5.	� Other Summary Statistics: Median and Range  58
3.6.	� Boxplots and the Interquartile Range  59
3.7.	� Summary Statistics in R  60
3.8.	� Exploring the Emotional Valence Ratings  64
3.9.	� Chapter Conclusions  67

4	 Introduction to the Linear Model: Simple Linear
Regression� 69

4.1.	� Word Frequency Effects  69
4.2.	� Intercepts and Slopes  71
4.3.	� Fitted Values and Residuals  72
4.4.	� Assumptions: Normality and Constant Variance  74
4.5.	� Measuring Model Fit with R2  75
4.6.	� A Simple Linear Model in R  77
4.7.	� Linear Models with Tidyverse Functions  82
4.8.	� Model Formula Notation: Intercept Placeholders  83
4.9.	� Chapter Conclusions  84

5	 Correlation, Linear, and Nonlinear Transformations� 86
5.1.	� Centering  86
5.2.	� Standardizing  87
5.3.	� Correlation  89
5.4.	� Using Logarithms to Describe Magnitudes  90
5.5.	� Example: Response Durations and Word Frequency  94
5.6.	� Centering and Standardization in R  98
5.7.	� Terminological Note on the Term ‘Normalizing’  101
5.8.	� Chapter Conclusions  101

6	 Multiple Regression� 103
6.1.	� Regression with More Than One Predictor  103
6.2.	 �Multiple Regression with Standardized Coefficients  105
6.3.	� Assessing Assumptions  109
6.4.	� Collinearity  112
6.5.	� Adjusted R2  115
6.6.	� Chapter Conclusions  116

15034-2313q-3pass-r02.indd 6 10/3/2019 5:50:38 PM

Contents  vii

7	 Categorical Predictors� 117
7.1.	� Introduction  117
7.2.	� Modeling the Emotional Valence of Taste and Smell Words  117
7.3.	� Processing the Taste and Smell Data  119
7.4.	� Treatment Coding in R  122
7.5.	� Doing Dummy Coding ‘By Hand’  123
7.6.	� Changing the Reference Level  124
7.7.	� Sum-coding in R  125
7.8.	� Categorical Predictors with More Than Two Levels  127
7.9.	� Assumptions Again  129

7.10.	� Other Coding Schemes  130
7.11.	� Chapter Conclusions  131

8	 Interactions and Nonlinear Effects� 133
8.1.	� Introduction  133
8.2.	� Categorical * Continuous Interactions  134
8.3.	� Categorical * Categorical Interactions  139
8.4.	� Continuous * Continuous Interactions  146
8.5.	 Nonlinear Effects  150
8.6.	� Higher-Order Interactions  155
8.7.	� Chapter Conclusions  156

9	 Inferential Statistics 1: Significance Testing� 157
9.1.	� Introduction  157
9.2.	� Effect Size: Cohen’s d  159
9.3.	 Cohen’s d in R  161
9.4.	 �Standard Errors and Confidence Intervals  162
9.5.	� Null Hypotheses  165
9.6.	� Using t to Measure the Incompatibility with the Null Hypothesis  166
9.7.	� Using the t-Distribution to Compute p-Values  167
9.8.	� Chapter Conclusions  169

10	 Inferential Statistics 2: Issues in Significance Testing� 171
10.1.	� Common Misinterpretations of p-Values  171
10.2.	� Statistical Power and Type I, II, M, and S Errors  171
10.3.	� Multiple Testing  175
10.4.	� Stopping rules  177
10.5.	� Chapter Conclusions  178

11	 Inferential Statistics 3: Significance Testing in a Regression Context� 180
11.1.	� Introduction  180
11.2.	 �Standard Errors and Confidence Intervals for Regression

Coefficients  180
11.3.	 �Significance Tests with Multilevel Categorical Predictors  184

15034-2313q-3pass-r02.indd 7 10/3/2019 5:50:38 PM

viii  Contents

11.4.	� Another Example: The Absolute Valence of Taste and Smell
Words  188

11.5.	� Communicating Uncertainty for Categorical Predictors  190
11.6.	� Communicating Uncertainty for Continuous Predictors  194
11.7.	� Chapter Conclusions  197

12	 Generalized Linear Models 1: Logistic Regression� 198
12.1.	� Motivating Generalized Linear Models  198
12.2.	� Theoretical Background: Data-Generating Processes  198
12.3.	� The Log Odds Function and Interpreting Logits  202
12.4.	� Speech Errors and Blood Alcohol Concentration  204
12.5.	� Predicting the Dative Alternation  207
12.6.	� Analyzing Gesture Perception  210
12.7.	� Chapter Conclusions  216

13	 Generalized Linear Models 2: Poisson Regression� 218
13.1.	� Motivating Poisson Regression  218
13.2.	� The Poisson Distribution  218
13.3.	� Analyzing Linguistic Diversity Using Poisson Regression  220
13.4.	� Adding Exposure Variables  225
13.5.	� Negative Binomial Regression for Overdispersed Count

Data  227
13.6.	� Overview and Summary of the Generalized Linear Model

Framework  229
13.7.	� Chapter Conclusions  230

14	 Mixed Models 1: Conceptual Introduction� 232
14.1.	� Introduction  232
14.2.	� The Independence Assumption  232
14.3.	� Dealing with Non-independence via Experimental Design

and Averaging  233
14.4.	� Mixed Models: Varying Intercepts and Varying Slopes  234
14.5.	� More on Varying Intercepts and Varying Slopes  237
14.6.	� Interpreting Random Effects and Random Effect Correlations  238
14.7.	� Specifying Mixed Effects Models: lme4 syntax  240
14.8.	� Reasoning About Your Mixed Model: The Importance of

Varying Slopes  241
14.9.	� Chapter Conclusions  244

15	 Mixed Models 2: Extended Example, Significance Testing,
Convergence Issues� 245

15.1.	� Introduction  245
15.2.	� Simulating Vowel Durations for a Mixed Model Analysis  245

15034-2313q-3pass-r02.indd 8 10/3/2019 5:50:38 PM

Contents  ix

15.3.	� Analyzing the Simulated Vowel Durations with
Mixed Models  253

15.4.	� Extracting Information out of lme4 Objects  255
15.5.	� Messing up the Model  257
15.6.	� Likelihood Ratio Tests  260
15.7.	� Remaining Issues  264
15.8.	 �Mixed Logistic Regression: Ugly Selfies  267
15.9.	� Shrinkage and Individual Differences  270

15.10.	� Chapter Conclusions  272

16	 Outlook and Strategies for Model Building� 274
16.1.	� What You Have Learned So Far  274
16.2.	� Model Choice  275
16.3.	� The Cookbook Approach  275
16.4.	� Stepwise Regression  276
16.5.	� A Plea for Subjective and Theory-Driven Statistical Modeling  277
16.6.	� Reproducible Research  279
16.7.	� Closing Words  280

References� 281
Appendix A. Correspondences Between Significance Tests and

Linear Models� 290
A1. t-Tests  290
A2. Tests for Categorical Data  295
A3. Other Tests  300

Appendix B. Reading Recommendations� 301
B1. Book Recommendations  301
B2. Article Recommendations  302
B3. Staying Up-to-Date  303

Index� 304
Index of R Functions� 308

15034-2313q-3pass-r02.indd 9 10/3/2019 5:50:38 PM

Let me take a few paragraphs to thank the people who have helped with this book. I’ve
been lucky to have been exposed to some excellent statistics teaching. First, I want to
thank Benjamin Bergen and Amy Schafer for getting me going with stats while I was
a grad student at the University of Hawaiʻi at Mānoa. Second, I would like to thank
Sarah Depaoli and Jack Vevea for teaching excellent graduate-level stats courses at
the University of California, Merced. Finally, my biggest thanks go to Roger Mundry.
I will never forget your workshops and our pizza nights.

Big thanks also go to Timo Roettger and Márton Sóskuthy for helping me develop
the materials for the Birmingham Statistics for Linguists Summer School. I particu-
larly want to thank Timo, a close friend and collaborator during all these years, for
continuously challenging me. I hope that at some point I will become the scientist that
lives up to his standards.

I want to thank Bruno Nicenboim for providing an excellent review of this book
that led to many changes. I also want to thank Kamil Kaźmierski and Keith Wilson for
additional suggestions. My student Greg Woodin has read all chapters and the book
made a massive jump in quality thanks to his feedback. Another person who has been
helping behind the scenes is my father Clive Winter, who has generously proofread
early drafts of each chapter.

Special thanks go to the team at Routledge for their patience with me, as well as
for their invaluable work on copy-editing and formatting this book (big shout-out for
Nikky Twyman for her hard work on the manuscript). Sorry for being perennially late
and not following the submission guidelines!

This book would not exist if not for Martine Grice, Anne Hermes, Doris Mücke,
and Stefan Baumann. I taught my first course on R and mixed models for the phonetics
group at the Institut für Linguistik.

I also want to thank all of the participants of the countless other workshops I have
taught. If you were a member of one of my workshops, rest assured that it was your
enthusiasm and your questions that allowed me to continuously refine the ways
I explain certain concepts. I want to particularly thank the participants of the 2018 stats
workshop at the Deafness Cognition and Language Research Centre at UCL, as well
the participants of the first Birmingham Statistics for Linguists Summer School (2018).

I also want to thank those countless people who have sent me unsolicited thank-you
emails in response to my freely available mixed model tutorial. Thanks for taking the
time to reach out!

Acknowledgments

15034-2313q-3pass-r02.indd 10 10/3/2019 5:50:38 PM

Acknowledgments  xi

Finally, I want to thank the people who made life meaningful during the time I was
writing this book, or who have supported me in other ways. These include my mum
and dad, Mark, Louis, Vincenzo, Maciek, Marcus, Brittany, Jeannette, Matteo, Emily,
Suganthi, Tommy, Dan, Jacob, Logan, Brendan, Jim, and Barry. I also want to include
the Midlands Out badminton team, my yoga teachers Anna Robottom and Richard
George, as well as the team of the Henrietta Street Gym for keeping me in high spirits.

15034-2313q-3pass-r02.indd 11 10/3/2019 5:50:38 PM

Approach and How to Use This Book
The language sciences are undergoing a quantitative revolution. There is ever more
data, an ever-growing toolkit of statistical methods, and a dedicated push towards
incorporating more empirical research into linguistic theorizing. This book is designed
to serve as a starting point for researchers from the language sciences and related dis-
ciplines to engage with emerging trends in data analysis. The plan is to take the reader
from their first steps in R all the way to more advanced techniques such as linear
mixed effects models. Along the way, the book aims to foster reproducible research
practices.

Although this book is focused on the analysis of linguistic datasets, the examples
chosen are accessible to researchers from other fields.

0.1.  Strategy of the Book
This book is intended as a full course in basic linear modeling, from descriptive sta-
tistics, regression, and multiple regression, over to logistic regression and Poisson
regression, all the way up to mixed models. Other books introduce statistics with more
‘traditional’ methods, such as t-tests, Chi-Square tests, ANOVAs, etc. I believe these
significance tests are the wrong starting point for learners. When students are intro-
duced to this ‘testing framework’, they spend most of their time worrying about what
test to pick, rather than worrying about how to implement their theoretical understand-
ing of a phenomenon in a statistical model. This book fosters model-based thinking
rather than test-based thinking.

I have found out through experience that introducing learners to statistics via the
linear model framework is much more engaging than teaching an array of signifi-
cance tests. When starting one’s statistical journey with these traditional methods,
statistics seems like a long vocabulary list, and the student is left hanging with a
highly compartmentalized view of the field. Moreover, learning statistics via sig-
nificance tests gives all the wrong incentives. Significance tests such as t-tests, Chi-
Square tests, and ANOVAs provide ‘quick fixes’ that encourage the researcher to
treat the p-value as the ultimate arbiter of truth. Instead, students should be encour-
aged to think deeply about their theories, and they should be encouraged to spend a
lot of time interpreting their models in substantive terms.

0  Preface

15034-2313q-3pass-r02.indd 12 10/3/2019 5:50:38 PM

Preface  xiii

This book does not focus on the underlying mathematics, for which more advanced
textbooks are available. The tone is deliberately casual, trying to make statistics
approachable. Everything is geared towards practical relevance, aimed at research-
ers and students who want to model their data statistically to address their research
questions. Some might argue that it is dangerous to teach linear models and their
extensions without delving deeply into the underlying mathematics. Indeed, for every
chapter in this book, there are book-length treatments that go into much more detail.
So, naturally, I’ve had to cut corners somewhere in assembling this material. I do
not intend to further statistical ignorance. Instead, I believe that there is value in a
friendly, practical introduction geared towards usability, with more interested and
mathematically capable readers being free to read more advanced texts further down
the line.

There are many problems with how statistical methods are applied within the
language sciences. For example, people use significance tests and p-values without
knowing what they mean; people misinterpret main effects in the presence of interac-
tions; and people fit models without being aware of convergence issues. This book is
very much written with these problems in mind, based on my experience of teaching
workshops to linguists at various institutions. Most of the errors that I see in the con-
text of mixed models, for example, have to do with an insufficient understanding of
the underlying regression framework. This is another reason for why this book focuses
so much on linear models.

I think that part of the problem the field has with statistics stems from the fact that
methods that are too advanced have been given to linguists too early. Baayen’s land-
mark textbook Analyzing Linguistic Data (2008) ushered in a new quantitative era in
linguistics. However, what many people end up using in practice is a pale reflection
of what’s discussed in Baayen’s book or other texts. This state of affairs results from
the fact that there is a scarcity of easy textbooks that provide stepping stones towards
more advanced reads. In believe that, as a scientific community, we further bad statis-
tics if we only write textbooks written for mathematically advanced readers.

This book is written in a friendly tone, directly addressing the reader (‘you’), and
explaining each formula and R function in quite a lot of detail. A lot of the datasets
analyzed come from my own work because it allows me to guide the student through
some of the reasoning processes that were going on behind the scenes. Altogether,
I hope that this is a very relatable and non-threatening introduction to statistics with R.

Finally, this book tries to foster reproducible research practices. For example, the
book gives advice about data sharing and reproducible code. Moreover, I will empha-
size that a publication without concomitant release of the data and code has to be
considered incomplete—unless there are very good reasons for not sharing these
materials. Reproducible research takes effort and needs to be trained. This book tries
to give the right incentives in these matters.

0.2.  Why R?
This book is entirely based on the R programming language. These days, it’s safe to
say that R is the de facto standard in the language sciences. If you are reading this,
chances are that the following paragraphs involve preaching to the choir, since pick-
ing up this book likely means that you are convinced of the necessity of using R.

15034-2313q-3pass-r02.indd 13 10/3/2019 5:50:38 PM

xiv  Preface

However, since there are still many linguistics and psychology departments that teach
their students proprietary software, in particular SPSS, it is worth highlighting why
there is absolutely no way around R these days, and why this book had to be structured
around R.

First, let me make a strong claim to begin with: if you are teaching your students
SPSS rather than a programming language, such as R, you are actively disadvantaging
their careers, as well as their success as scientists. Not only are there more job posts
that ask for R skills than SPSS skills, but R is also much more conducive to open and
reproducible research practices, which are required by an increasing number of aca-
demic journals and funding bodies. At some point in the near future, it will be difficult
for your students to publish if they don’t offer their data and code, a practice that the
point-and-click structure of SPSS does not actively incentivize. I’d go as far as saying
that, at this stage, teaching SPSS to students is unethical, because doing so is inher-
ently directed against the open and community-driven nature of science.

Sometimes I hear the argument that R may be too difficult for students, in particu-
lar for undergraduates. In stark contrast to this, I’ve found that students from all sorts
of backgrounds (even without any programming knowledge) can quickly pick up R
if it is taught in a friendly manner. Moreover, it helps students that R can be used on
their own machines without licensing hassle, and it further helps students that there’s
by now much more online help for R than for SPSS. Also, the interactive nature of
R, as well as the ease with which plots can be created, can be highly engaging to
students.

A final point about R is that it allows making ‘data wrangling’ an integral part of
a statistical analysis. Because preprocessing the data and statistical modeling are two
sides of the same coin, they should happen within the same software environment. R
makes this easier than other software.

0.3.  Why the Tidyverse?
These days, there are two ‘dialects’ or ‘styles’ of programming in R. One uses mostly
‘base R’ functions (those that come with the original R distribution). The other dialect
uses ‘tidyverse’ packages. The ‘tidyverse’ is a label used for the network of packages
developed by Hadley Wickham and colleagues, including such widely known pack-
ages as dplyr and ggplot2. Which style should you learn?

Essentially, there’s no way around knowing both of these styles. A solid foundation
in base R is still crucial, even if many tidyverse functions provide easier alterna-
tives. Many web tutorials or discussions in online help forums such as StackOver-
flow include extensive base R code, but the student will invariably also encounter
tidyverse-style code. Given this state of affairs, I think that it is necessary to teach
both styles.

That said, the ‘tidy’ style is much easier to read and I’ve found that students grasp
it more quickly. So I decided that there should be one introductory chapter on base
R (Chapter 1), as well as one on the tidyverse (Chapter 2). However, after Chapter 2,
the book almost exclusively uses tidyverse-style code from Chapter 2 onwards. Only
when base R offers the easier alternative is base R code used.

15034-2313q-3pass-r02.indd 14 10/3/2019 5:50:38 PM

Preface  xv

0.4.  R Packages Required for This Book
You need to download and install R and RStudio, which can be downloaded online.
The following R packages need to be installed to be able to execute all code in all
chapters. The tidyverse and broom packages should be loaded for every chapter,
as they are used throughout the entire book.

install.packages('tidyverse')
install.packages('broom')
install.packages('gridExtra')
install.packages('car')
install.packages('MASS')
install.packages('pscl')
install.packages('effsize')
install.packages('lme4')
install.packages('afex')
install.packages('brms')
install.packages('MuMIn')
install.packages('swirl')
install.packages('languageR')
install.packages('emmeans')

0.5.  What This Book Is Not
To get any false expectations out of the way, let me tell you a few things that this book is not.

•	 This book is not an introduction to the underlying theory and mathematics of
regression, or mixed models. For this, there are more advanced materials avail-
able. Beware that any introductory text will have to cut corners on some topics,
and this one is no exception.

•	 This book is not an introduction to exploratory techniques, such as exploratory
factor analysis, cluster analysis, or classification and regression trees.

•	 This book is not a ‘cookbook’ that teaches you a whole range of different tech-
niques. The focus is on regression modeling. Appendix A shows how some basic
significance tests (such as t-tests) map onto the techniques discussed throughout
the book. The concluding chapter of this book, Chapter 16, provides additional
arguments why the cookbook approach is limiting students, and why it should be
avoided whenever possible.

0.6.  How to Use This Book
The materials presented here are intended as a full course. Each chapter combines
conceptual introductions to statistical topics with hands-on applications. To maximize
learning benefits, it is of utmost importance that you actually execute the R code pre-
sented in each chapter. Only by typing in each and every command can you develop
the relevant muscle memory to learn the programming language.

15034-2313q-3pass-r02.indd 15 10/3/2019 5:50:38 PM

xvi  Preface

All the data that is needed for this book can be accessed via the following Open
Science Framework (OSF) repository:

https://osf.io/34mq9/

Some further recommendations:

•	 Although I do provide script files for all chapters on this webpage, I don’t recom-
mend looking at these while reading the book. Only consult these when you get
stuck.

•	 The data can be downloaded from the website. It’s possible to work through the
entire book in one continued R session. Alternatively, you can also quit R after
each chapter and come back to where you finished.

•	 I highly recommend setting up a folder on your computer where all the materials
are saved, and where you create scripts that follow the code presented in each
chapter. Annotate the code with your own comments to make it ‘your own’.

•	 There are exercises at the end of each chapter. The solutions to the exercises can
also be found on the above-mentioned repository.

0.7.  Information for Teachers
This book is intended to be read from front to back. However, Appendix A (on signifi-
cance tests) and Chapters 9 and 10 can be moved to different points, depending on the
needs of a particular course. Likewise, Chapter 16 can be read independently of the
other chapters, as well. This book can be used for both undergraduate and postgradu-
ate courses. Chapter 8 on interactions is hard and, if teaching an undergraduate class,
I may forestall this chapter at the expense of having more time to discuss inferential
statistics (Chapters 9, 10, and 11).

If you’ve already taught statistics classes, you may be used to teaching a class that
is focused on significance tests. In this case, I welcome you to consider the approach
adopted in this book. Trust me, it works.

That said, you may want to continue teaching significance tests. In this case, this
book could still be a useful textbook for your class, as the issues discussed here also
apply to significance tests. Moreover, the methods discussed throughout the chap-
ters have direct correspondences to significance tests, and these correspondences are
explained in Appendix A.

All in all, I hope that this book strikes a nice balance between the easy and the
advanced, so that readers from all levels will find something useful in it.

15034-2313q-3pass-r02.indd 16 10/3/2019 5:50:38 PM

1	� Introduction to R

1.1. � Introduction
Statistics, conceived broadly, is the process of “getting meaning from data".1 We per-
form statistical analyses on datasets to further our understanding. As such, statistics is
a fundamentally human process that makes large sets of numbers embedded in com-
plex datasets amenable to human cognition.

Some people think of statistics as being only the very last step of the empirical
process. You design your study, you collect your data, then you perform a statistical
analysis of the data. This is a narrow view of statistics.

This book assumes a broad view. In particular, I view the process of getting the
data in shape for an analysis as part of your actual analysis. Thus, what people talk
of as ‘preprocessing’ or ‘data wrangling’ is an integral part of statistics. In fact, most
of your time during an actual analysis will be spent on wrangling with the data. The
first two chapters focus on teaching you the skills for doing this. I will also teach you
the first steps towards an efficient workflow, as well as how to do data processing in
a reproducible fashion.

R makes all of this easy—once you get used to it. There’s absolutely no way around
a command-line-based tool if you want to be efficient with data. You need the abil-
ity to type in programming commands, rather than dealing with the data exclusively
via some graphical user interface. Using a point-and-click-based software tool such
as Excel slows you down and is prone to error. More importantly, it makes it more
difficult for others to reproduce your analysis. Pointing and clicking yourself through
some interface means that another researcher will have a difficult time tracing your
steps. You need a record of your analysis in the form of programming code.

As a telling example of what can go wrong with processing your data, consider the
case of ‘austerity’s spreadsheet error’, which has been widely covered in the news:2
Reinhart and Rogoff (2010) published an influential paper which showed that, on
average, economic growth was diminished when a country’s debt exceeds a certain
limit. Many policy makers used this finding as an argument for austerity politics.
However, the MIT graduate student Thomas Herndon discovered that the results were

1	 This phrase is used by Michael Starbird in his introduction to statistics for The Great Courses.
2	 For example [accessed, October 12, 2018]:
	  www.theguardian.com/politics/2013/apr/18/uncovered-error-george-osborne-austerity
	  www.bbc.co.uk/news/magazine-22223190
	  www.aeaweb.org/articles?id=10.1257/aer.100.2.573

15034-2313q-3pass-r02.indd 1 10/3/2019 5:50:38 PM

DolanA
Highlight
curly quotes please

2  Introduction to Base R

based on a spreadsheet error: certain rows were accidentally omitted in their analysis.
Including these rows led to drastically different results, with different implications for
policy makers. The European Spreadsheet Risks Interest Group curates a long list of
spreadsheet “horror stories".3 The length of this list is testament to the fact that it is
difficult not to make errors when using software such as Excel.

The upshot of this discussion is that there’s no way around learning a bit of R.
The fact that this involves typing in commands rather than clicking yourself through
some graphical interface may at first sight seem daunting. But don’t panic—this
book will be your guide. Those readers who are already experienced with R may
skim through the next two chapters or skip them altogether.

1.2. � Baby Steps: Simple Math with R
You should have installed R and RStudio by now. R is the actual programming lan-
guage that you will use throughout this book. RStudio makes managing projects eas-
ier, thus facilitating your workflow. However, it is R embedded within RStudio that is
the actual workhorse of your analysis.

When you open up RStudio, the first thing you see is the console, which is your
window into the world of R. The console is where you type in commands, which R
will then execute. Inside the console, the command line starts with the symbol ‘>’.
Next to it, you will see a blinking cursor ‘|’. The blinking is R’s way of telling you
that it’s ready for you to enter some commands.

One way to think about R is that it’s just an overblown calculator. Type in ‘2 + 2’
and press ENTER:

2 + 2

[1] 4

This is addition. What about subtraction?

3 - 2

[1] 1

What happens if you supply an incomplete command, such as ‘3 –’, and then hit
ENTER? The console displays a plus sign. Hitting ENTER multiple times yields even
more plus signs.

3 -

+
+
+
+

3	 www.eusprig.org/horror-stories.htm [accessed August 26, 2019]

15034-2313q-3pass-r02.indd 2 10/3/2019 5:50:38 PM

DolanA
Highlight
curly quotes please

Introduction to Base R  3

You are stuck. In this context, the plus sign has nothing to do with addition. It’s R’s
way of showing you that the last command is incomplete. There are two ways out of
this: either supplying the second number, or aborting by pressing ESC. Remember this
for whenever you see a plus sign instead of a ‘>’ in the console.

When you are in the console and the cursor is blinking, you can press the up and
down arrows to toggle through the history of executed commands. This may save you
some typing in case you want to re-execute a command.

Let’s do some division, some multiplication and taking a number to the power of
another number:

3 / 2	# division

[1] 1.5

3 * 2	# multiplication

[1] 6

2 ^ 2	# two squared

[1] 4

2 ^ 3	# two to the power of three

[1] 8

You can stack mathematical operations and use brackets to overcome the default order
of operations. Let’s compare the output of the following two commands:

(2 + 3) * 3

[1] 15

2 + (3 * 3)

[1] 11

The first is 2 + 3 = 5, multiplied by 3 , which yields 15. The second is 3 * 3 = 9 plus
2 , which yields 11 . Simple mathematical operations have the structure ‘A operation
B’, just as in mathematics. However, most ‘functions’ in R look different from that.
The general structure of an R function is as follows:

function(argument1, argument2, ...)

A function can be thought of as a verb, or an action. Arguments are the inputs to
functions—they are what functions act on. Most functions have at least one argument.

15034-2313q-3pass-r02.indd 3 10/3/2019 5:50:40 PM

4  Introduction to Base R

If a function has multiple arguments, they are separated by commas. Some arguments
are obligatory (the function won’t run without being supplied a specific argument).
Other arguments are optional.

This is all quite abstract, so let’s demonstrate this with the square root function
sqrt():

sqrt(4)

[1] 2

This function only has one obligatory argument. It needs a number to take the
square root of. If you fail to supply the corresponding argument, you will get an error
message.

sqrt()

Error in sqrt() : 0 arguments passed to 'sqrt' which
requires 1

Another example of a simple function is the absolute value function abs(). This
function makes negative numbers positive and leaves positive numbers unchanged, as
demonstrated by the following two examples.

abs(-2)

[1] 2

abs(2)

[1] 2

1.3. � Your First R Script
So far, you have typed things straight into the console. However, this is exactly what
you don’t want to do in an actual analysis. Instead, you prepare an R script, which
contains everything needed to reproduce your analysis. The file extension .R is used
for script files. Go to RStudio and click on ‘File’ in the menu tab, then click on ‘New
File’ in the pop-down menu, then ‘R Script’.

Once you have opened up a new script file, your RStudio screen is split into two
halves. The top half is your R script; the bottom half is the console. Think of your
R script as the recipe, and the R console as the kitchen that cooks according to your
recipe. An alternative metaphor is that your R script is the steering wheel, and the
console is the engine.

Type in the following command into your R script (not into the console) and press
ENTER.

2 * 3

15034-2313q-3pass-r02.indd 4 10/3/2019 5:50:40 PM

Introduction to Base R  5

Nothing happens. The above command is only in your script—it hasn’t been exe-
cuted yet. To make something happen, you need to position your cursor in the line
of the command and press the green arrow in the top right of the R script window.
This will ‘send’ the instructions from the script down to the console, where R will
execute the command. However, rather than using your mouse to click the green but-
ton, I strongly encourage you to learn the keyboard shortcut for running a command,
which is COMMAND + ENTER on a Mac and ALT + ENTER on a PC.

When working with R, try to work as much as possible in the script, which should
contain everything that is needed to reproduce your analysis. Scripts also allow you
to comment your code, which you can do with the hashtag symbol ‘#’. Everything
to the right of the hashtag will be ignored by R. Here’s how you could comment the
above command:

Let's multiply two times three:
2 * 3

Alternatively, you can have the comment in the same line. Everything up to the
comment is executed; everything after the comment is ignored.

2 * 3 # Multiply two times three

Commenting is crucial. Imagine getting back to your analysis after a two-year break,
which happens surprisingly often. For a reasonably complex data analysis, it may take
you hours to figure out what’s going on. Your future self will thank you for leaving
helpful comments. Perhaps even more importantly, comprehensive commenting facili-
tates reproducibility since other researchers will have an easier time reading your code.

Different coders have different approaches, but I developed the personal habit of
‘commenting before coding’. That is, I write what I am going to do next in plain lan-
guage such as ‘# Load in data:’. I supply the corresponding R code only after
having written the comment. As a result of this practice, my scripts are annotated from
the get-go. It also helps my thinking, because each comment states a clear goal before
I start hacking away at the keyboard.

Maybe you don’t want to adopt this habit, and that’s OK. Programming styles are
deeply personal and it will take time to figure out what works for you. However,
regardless of how you write your scripts, write them with a future audience in mind.

1.4. � Assigning Variables
Let’s use the R script to assign variables. Write the following command into your R
script (not into the console).

x < -2 * 3

If you send this command in the console (remember: COMMAND + ENTER or
CTRL + ENTER), nothing happens. The leftwards pointing arrow ‘<-’ is the ‘assign

15034-2313q-3pass-r02.indd 5 10/3/2019 5:50:40 PM

DolanA
Cross-Out

DolanA
Inserted Text
x <- 2 * 3

[no space between angled bracket and dash, see p.7. Please retain the current font]

6  Introduction to Base R

operator’. It assigns whatever is to the right of the operator to an ‘object’ that bears
the name on the left. You decide the name yourself. In this case, the object is called x,
and it stores the output of the operation ‘2 * 3’. I like to think of the arrow ‘<-’ as
metaphorically putting something into a container. Imagine a container with ‘x’ writ-
ten on it that contains the number 6. By typing in the container’s name, you retrieve
its content.

x

[1] 6

You will also see code that uses a different assignment operator, namely ‘=’ as
opposed to ‘<-’.

x = 2 * 3

[1] 6

There is a subtle difference between the two assignment operators that I won’t go
into here. For now, it’s best if you stick to ‘<-’, which is also what most R style guides
recommend. As you will be using the ‘<-’ assign operator constantly, make sure to
learn its shortcut: ALT + minus.

The x can be used in further mathematical operations as if it’s a number.

x / 2

[1] 3

Crucially, R is case-sensitive. Typing in capital ‘X’ yields an error message because
the object capital ‘X’ does not exist in your ‘working environment’.

X

Error: object 'X' not found

To retrieve a list of all objects in your current working environment, type ls()
(this functionʼs name stands for ‘list’).

ls()

[1] "x"

Since you just started a new session and only defined one object, your working
environment only contains the object x. Notice one curiosity about the ls() func-
tion: it is one of the few functions in R that doesn’t need any arguments, which is why
running the function without an argument didn’t produce an error message.

15034-2313q-3pass-r02.indd 6 10/3/2019 5:50:40 PM

Introduction to Base R  7

1.5. � Numeric Vectors
Up to this point, the object x only contained one number. One handy function to create
multi-number objects is the concatenate function c(). The following code uses this
function to put the numbers 2.3, 1, and 5 into one object. As before, typing the object’s
name reveals its content. This command overrides the previous x.

x <- c(2.3, 1, 5)

x

[1] 2.3 1.0 5.0

The object x is what is called a vector. In R, a ‘vector’ simply is a list of numbers.
You can check how long a vector is with the length() function.

length(x)

[1] 3

As you will see shortly, there are different types of vectors. The vector x contains
numbers, so it is a vector of type ‘numeric’. The mode() and class() function can
be used to assess vector types.4 People often either talk of a vector’s ‘atomic mode’ or
‘atomic class’.

mode(x)

[1] "numeric"

class(x)

[1] "numeric"

It’s important to know what type of vector you are dealing with, as certain math-
ematical operations can only be applied to numeric vectors.

Let’s create a sequence of integers from 10 to 1 using the colon function. In R, the
colon is a sequence operator that creates an integer sequence from the first number to
the last number.

mynums <- 10:1

mynums

[1] 10 9 8 7 6 5 4 3 2 1

4	 These functions are equivalent for simple vectors, but exhibit different behavior for more complex
objects (not covered here).

15034-2313q-3pass-r02.indd 7 10/3/2019 5:50:40 PM

8  Introduction to Base R

Given that mynums is a numeric vector, it is possible to perform all kinds of new math-
ematical operations on it. The following code showcases some useful summary functions.

sum(mynums)	# sum

[1] 55

min(mynums)	# smallest value (minimum)

[1] 1

max(mynums)	# largest value (maximum)

[1] 10

range(mynums)  # minimum and maximum together

[1] 1 10

diff(range(mynums))  # range: difference between min and max

[1] 9

mean(mynums)	# arithmetic mean, see Ch. 3

[1] 5.5

sd(mynums)	 # standard deviation, see Ch. 3

[1] 3.02765

median(mynums)	 # median, see Ch. 3

[1] 5.5

If you use a function such as subtraction or division on a numeric vector, the func-
tion is repeated for all entries of the vector.

mynums - 5	 # subtract 5 from every number

[1] 5 4 3 2 1 0 -1 -2 -3 -4

mynums / 2	 # divide every number by two

[1] 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

15034-2313q-3pass-r02.indd 8 10/3/2019 5:50:40 PM

Introduction to Base R  9

1.6. � Indexing
Often, you need to operate on specific subsets of data. Vectors can be indexed by posi-
tion. Conceptually, it is important to separate a vector’s position from the value that’s
stored at said position. Because each vector in R is ordered, it is possible to use indices
to ask for the first data point, the second data point, and so on.

mynums[1]	 # retrieve value at first position

[1] 10

mynums[2]	 # retrieve value at second position

[1] 9

mynums[1:4]	# retrieve first four values

[1] 10 9 8 7

Putting a minus in front of an index spits out everything inside a vector except for
that index.

mynums[-2]	 # retrieve everything except second position

[1] 10 8 7 6 5 4 3 2 1

Now that you know the basic of indexing, you can also understand why there’s a
‘[1]’ in front of each of line of R output you’ve seen so far. Creating a longer integer
sequence will help you wrap your head around this.

1:100

 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[15] 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[29] 29 30 31 32 33 34 35 36 37 38 39 40 41 42
[43] 43 44 45 46 47 48 49 50 51 52 53 54 55 56
[57] 57 58 59 60 61 62 63 64 65 66 67 68 69 70
[71] 71 72 73 74 75 76 77 78 79 80 81 82 83 84
[85] 85 86 87 88 89 90 91 92 93 94 95 96 97 98
[99] 99 100

The ‘[1]’ simply means ‘first position’. Whenever there’s a line break, R will show
the position of the first value that starts a new row. The numbers in the square brackets
to the left may be different on your screen: this will depend on your screen resolution
and the resolution of the font printed in the R console.

15034-2313q-3pass-r02.indd 9 10/3/2019 5:50:40 PM

10  Introduction to Base R

1.7. � Logical Vectors
Calling data by position is impractical for large datasets. If you had, for example, a
dataset with 10,000 rows, you wouldn’t necessarily know in advance that a particular
data point of interest is at the 7,384th position. You need to be able to ask for specific
values, rather than having to know the position in advance. For this, logical statements
are useful.

mynums > 3	 # Which values are larger than 3?

[1] TRUE TRUE TRUE TRUE TRUE TRUE
[7] TRUE FALSE FALSE FALSE

The statement mynums > 3 uses the ‘greater than’ sign ‘>’. This line of code is
essentially the same as asking: ‘Is it the case that mynums is larger than 3?’ Because
the vector mynums contains multiple entries, this question is repeated for each posi-
tion, each time returning a TRUE value if the number is actually larger than 3, or a
FALSE if the number is smaller than 3.

The logical operator ‘>=’ translates to ‘larger than or equal to’. The operators ‘<’
and ‘<=’ mean ‘smaller than’ and ‘smaller than or equal to’. Have a look at what the
following commands do, keeping in mind that the mynums vector contains the integer
sequence 10:1.

mynums >= 3 # Larger than or equal to 3?

[1] TRUE TRUE TRUE TRUE TRUE TRUE
[7] TRUE TRUE FALSE FALSE

mynums < 4 # Smaller than 4?

[1] FALSE FALSE FALSE FALSE FALSE FALSE
[7] FALSE TRUE TRUE TRUE

mynums <= 4 # Smaller than or equal to 4?

[1] FALSE FALSE FALSE FALSE FALSE FALSE
[7] TRUE TRUE TRUE TRUE

mynums == 4 # Equal to 4?

[1] FALSE FALSE FALSE FALSE FALSE FALSE
[7] TRUE FALSE FALSE FALSE

mynums != 4 # Not equal to 4?

[1] TRUE TRUE TRUE TRUE TRUE TRUE
[7] FALSE TRUE TRUE TRUE

15034-2313q-3pass-r02.indd 10 10/3/2019 5:50:40 PM

Introduction to Base R  11

The result of performing a logical operation is actually a vector itself. To illustrate
this, the following code stores the output of a logical operation in the object mylog.
The class() function shows that mylog is ‘logical’.

mylog <- mynums >= 3

class(mylog)

[1] "logical"

Logical vectors can be used for indexing. The following code only returns those
values that are larger than or equal to 3.

mynums[mylog]

[1] 10 9 8 7 6 5 4 3

Perhaps it is more transparent to put everything into one line of code rather than
defining separate vectors:

mynums[mynums >= 3]

[1] 10 9 8 7 6 5 4 3

It may help to paraphrase this command as if directly talking to R: ‘Of the vector
mynums, please retrieve those numbers for which the statement mynums >= 3
is TRUE’.

1.8. � Character Vectors
Almost all analysis projects involve some vectors that contain text, such information
about a participant’s age, gender, dialect, and so on. For this, ‘character’ vectors are
used.

The code below uses quotation marks to tell R that the labels 'F' and 'M' are
character strings rather than object names or numbers. You can use either single quotes
or double quotes, but you should not mix the two.5

gender <- c('F', 'M', 'M', 'F', 'F')

The character-nature of the gender vector is revealed when printing the vector
into the console, which shows quotation marks.

5	 I use single quotes because it makes the code look ‘lighter’ than double quotes, and because it saves
me one additional key stroke on my keyboard.

15034-2313q-3pass-r02.indd 11 10/3/2019 5:50:40 PM

12  Introduction to Base R

gender

[1] "F" "M" "M" "F" "F"

As before, the type of vector can be verified with class().

class(gender)

[1] "character"

As before, you can index this vector by position or using logical statements.

gender[2]

[1] "M"

gender[gender == 'F']

[1] "F" "F" "F"

However, it is impossible to perform mathematical functions on this vector, and
doing so will spit out a warning message.

mean(gender)

[1] NA
Warning message:
In mean.default(gender) : argument is not numeric or logi-
cal: returning NA

1.9. � Factor Vectors
A fourth common type of vector is the ‘factor’ vector. The following code overrides
the original gender vector with a new version that has been converted to a factor
using as.factor().6

gender <- as.factor(gender)

gender

[1] F M M F F
Levels: F M

The output shows text, but, unlike the character vector, there are no quotation
marks. The ‘levels’ listed below the factor are the unique categories in the vector. In

6	 There are also as.numeric(), as.logical(), and as.character(). Perhaps play around
with these functions to see what happens (and what can go wrong) when you convert a vector of one
type into another type. For example, what happens when you apply as.numeric() to a logical
vector? (This may actually be useful in some circumstances.)

15034-2313q-3pass-r02.indd 12 10/3/2019 5:50:40 PM

Introduction to Base R  13

this case, the vector gender contains 5 data points, which are all tokens of the types
"F" and "M". The levels can be accessed like this:

levels(gender)

[1] "F" "M"

The issue with factor vectors is that the levels are fixed. Let’s see what happens
when you attempt to insert a new value 'not_declared' into the third position of
the gender vector.

gender[3] <- 'not_declared'

Warning message:
In '[<-.factor'('*tmp*', 3, value = "not_declared") :
 invalid factor level, NA generated

gender

[1] F M <NA> F F
Levels: F M

The third position is now set to NA, a missing value. This happened because the only
two levels allowed are 'F' and 'M'. To insert the new value 'not_declared',
you first need to change the levels.

levels(gender) <- c('F', 'M', 'not_declared')

Let’s re-execute the insertion statement.

gender[3] <- 'not_declared'

This time around, there’s no error message, because 'not_declared' is now
a valid level of the gender vector. Let’s check whether the assignment operation
achieved the expected outcome:

gender

[1] M F not_declared M M
Levels: M F not_declared

1.10. � Data Frames
Data frames are basically R’s version of a spreadsheet. A data frame is a two-dimen-
sional object, with rows and columns. Each column contains a vector.

Let’s build a data frame. The following command concatenates three names into
one vector.

15034-2313q-3pass-r02.indd 13 10/3/2019 5:50:40 PM

14  Introduction to Base R

participant <- c('louis', 'paula', 'vincenzo')

Next, the data.frame() function is used to create a data frame by hand. Each
argument of this function becomes a column. Here, the participant vector will be
the first column. The second column is named score, and a vector of three numbers
is supplied.

mydf <- data.frame(participant, score = c(67, 85, 32))

mydf

participant score
1 louis 67
2 paula 85
3 vincenzo 32

Because a data frame is two-dimensional, you can ask for the number of rows or
columns.

nrow(mydf)

[1] 3

ncol(mydf)

[1] 2

The column names can be retrieved like this:

colnames(mydf)

[1] "participant" "score"

Data frames can be indexed via the name of the column by using the dollar sign
operator ‘$’.

mydf$score

[1] 67 85 32

This results in a numeric vector. You can then apply summary functions to this vec-
tor, such as computing the mean:

mean(mydf$score)

[1] 61.33333

You can check the structure of the data frame with the str() function.

15034-2313q-3pass-r02.indd 14 10/3/2019 5:50:40 PM

Introduction to Base R  15

str(mydf)

'data.frame':  3 obs. of 2 variables:
 $ participant: Factor w/ 3 levels "louis","paula",..: 1 2 3
 $ resp    : num 67 85 32

This function lists all the columns and their vector types. Notice one curiosity:
the participant column is indicated to be a factor vector, even though you only
supplied a character vector! The data.frame() function secretly converted your
character vector into factor vector.

The summary() function provides a useful summary, listing the number of data
points for each participant, as well as what is called a ‘five number summary’ of the
score column (see Chapter 3).

summary(mydf)

 participant score
louis :1 Min. :32.00
paula :1 1st Qu.:49.50
vincenzo:1 Median :67.00
 Mean :61.33
 3rd Qu.:76.00
 Max. :85.00

To index rows or columns by position, you can use square brackets. However, due
to data frames being two-dimensional, this time around you need to supply identifiers
for rows and columns, which are separated by comma, with rows listed first.

mydf[1,] # first row

 participant score
1 louis 67

mydf[, 2] # second column

[1] 67 85 32

mydf[1:2,] # first two rows

 participant score
1 louis 67
2 paula 85

And these operations can be stacked, such as:

mydf[, 1][2]	# first column, second entry

[1] paula
Levels: louis paula vincenzo

15034-2313q-3pass-r02.indd 15 10/3/2019 5:50:40 PM

16  Introduction to Base R

The last statement can be unpacked as follows: the first indexing operation extracts
the first column. The output of this operation is itself a unidimensional vector, to
which you can then apply another indexing operation.

What if you wanted to extract the row for the participant called Vincenzo? For this,
logical statements can be used.

mydf[mydf$participant == 'vincenzo',]

 participant score
3 vincenzo 32

Let me paraphrase this command into plain English: ‘Using the data frame
mydf, extract only those rows for which the statement mydf$participant ==
 'vincenzo' returns a TRUE value.’ Notice how the result of this indexing operation
is a data frame with one row. Because the result is a data frame, you can use the dollar
sign operator to further index a specific column, as in the following command:

mydf[mydf$participant == 'vincenzo',] $score

[1] 32

1.11. � Loading in Files
When loading in files into your current working environment, R needs to know
which folder on your computer to look at, what is called the ‘working directory’. Use
getwd() to check the current working directory.

getwd() # output specific to one's computer

[1] "/Users/bodo"

This is the folder on your machine where R currently ‘looks at’, and it is where
it expects your files. You can look at the folder’s content from within R, using the
list.files() function. This should remind you of the ls() function. Whereas ls()
displays the R-internal objects, list.files() displays R-external files.

list.files()	# output not shown (specific to your machine)

To change your working directory to where your files are, you can use setwd().
Crucially, this command will be computer-specific, and it will differ between Mac/
Linux and Windows. Rather than explaining all of this, I recommend you to set
your working directory in RStudio, where you can find the menu item ‘Set Working
Directory’ under the drop-down menu item ‘Session’. Once you’ve clicked on ‘Set
Working Directory’, navigate to the folder where the files for this book are (if you
haven’t downloaded those files yet, now is your chance!). It is OK if the files in the
folder are not displayed or grayed out. You can still click ʻOpenʼ here as your goal
right now is not to select the file, but the folder where the file is located at. Once the
working directory has been set, you load the ‘nettle_1999_climate.csv’ file using

15034-2313q-3pass-r02.indd 16 10/3/2019 5:50:40 PM

Introduction to Base R  17

read.csv() as follows. The .csv extension means that this is a comma-separated
file (internally, columns are separated by commas). This dataset is taken from Net-
tle’s (1999) book Linguistic Diversity and will be explained in more detail in later
chapters.

nettle <- read.csv('nettle_1999_climate.csv')

If there’s no error message, you have successfully loaded the file. If there is an error
message, check whether you have typed the file name correctly. If that is the case, use
list.files() to check whether the file is actually in the folder. If that is not the
case, you may not have set the working directory successfully, which you can assess
using getwd().

Whenever you load a file into R, the next step should be to check its content. The
head() function shows the first six rows of the nettle data frame (the ‘head’ of
the data frame).

head(nettle)

 Country Population Area MGS Langs
1 Algeria 4.41 6.38 6.60 18
2 Angola 4.01 6.10 6.22 42
3 Australia 4.24 6.89 6.00 234
4 Bangladesh 5.07 5.16 7.40 37
5 Benin 3.69 5.05 7.14 52
6 Bolivia 3.88 6.04 6.92 38

The tail() function displays last six rows (the ‘tail’ of the data frame).

tail(nettle)

 Country Population Area MGS Langs
69 Venezuela 4.31 5.96 7.98 40
70 Vietnam 4.83 5.52 8.80 88
71 Yemen 4.09 5.72 0.00 6
72 Zaire 4.56 6.37 9.44 219
73 Zambia 3.94 5.88 5.43 38
74 Zimbabwe 4.00 5.59 5.29 18

It is important to discuss a few more points regarding file management for data
analysis projects. First, when you quit RStudio, a ‘Quit R session’ question will pop
up, asking you whether you want to save the content of your workspace. Click ‘No’.
Each time you open up R or RStudio, your new R session should open a new work-
ing environment and load in the required files. You don’t want objects from previous
analysis projects to be floating around, which may slow things down and cause nam-
ing conflicts (two objects having the same name). Instead, you want to keep all your
data external to R.

There’s also absolutely no problem if you override or messed up an R object within
a session. Let’s say you accidentally override the Langs column with NAs (missing
values).

15034-2313q-3pass-r02.indd 17 10/3/2019 5:50:40 PM

18  Introduction to Base R

nettle$Langs <- NA

This is not a problem at all. Simply re-execute the entirety of your script up to the
point where the mistake happened, and you will have everything back to where it was.
For most simple analyses, there’s not really any purpose for ‘backing up’ R objects.7

It is a good idea to structure your workflow around .csv files, as these are quite easy
to deal with in R. Of course, R supports many other file types. For example, the ‘exam-
ple_file.txt’ in the book’s folder is a tab-separated file; that is, columns are separated
by tabs (which are written ‘\t’ computer-internally). You can use read.table()
to load in this file as follows (ignore the warning message):8

mydf <- read.table('example_file.txt',
 sep = '\t', header = TRUE)

Warning message:
In read.table("example_file.txt", sep = "\t", header = TRUE):
 incomplete final line found by readTableHeader on
'example_file.txt'

mydf

 amanda jeannette gerardo
1 3 1 2
2 4 5 6

The read.table() function requires you to specify a separator (the argument
sep), which is '\t' for tabs in this case. The header = TRUE argument is required
when the first row of the table contains column names. Sometimes, column name
information is stored in a separate file, in which case you need header = FALSE.

There are too many file types to cover in this book. Often, Google will be your
friend. Alternatively, you may resort to Excel to open up a file and save it in a format
that you can easily read into R, such as .csv. However, let me tell you about a general
strategy for dealing with file types where you don’t know the internal structure. Load
the file into R as text, using readLines().

x <- readLines('example_file.txt', n = 2)

x

[1] "amanda\tjeannette\tgerardo" "3\t1\t2"

7	 The save() function allows you to save R objects in .RData files, as demonstrated here for the
object mydf. You can use load() to load an .RData file into your current R session. Knowing
about this comes in handy when you have to deal with computations that take a long time.

	  save(mydf, file = 'mydataframe.RData')
8	 Warning messages differ from error messages. A warning message happens when a command was

executed but the function wants to warn you of something. An error message means that a command
was aborted.

15034-2313q-3pass-r02.indd 18 10/3/2019 5:50:40 PM

Introduction to Base R  19

The n argument specifies the number of lines to be read. You often do not need more
than two lines in order to understand the structure of an object. In this case, you can
see that the first line contains column names, which tells you that header = TRUE
is necessary. In addition, the second row contains tab delimiters '\t', which tells
you that sep = '\t' is necessary. You can use this information to provide the right
arguments to the read.table() function.

If you want to load in Excel files (.xls, .xlsx), there are various packages
available. Other R packages exist for loading in SPSS or STATA files. However,
all of these file types are proprietary, including .xls and .xlsx. This means that
some company owns these file types. Whenever possible, try to avoid propri-
etary file types and use simple comma- or tab-separated files to manage your
projects.

A note on how to use data in this book. For each chapter, new data will be loaded.
It is perfectly fine to leave R open and work within one session for the entirety of this
book. Alternatively, you can close R after working on a specific chapter (don’t forget
to not save your workspace). While it is OK for this book to work within one contin-
ued R session, you will always want to start a new R session in an actual data analysis,
which helps to keep things neat.

1.12. � Plotting
Let’s begin by creating one of the most useful plots in all of statistics, the histogram.
Figure 1.1 shows a histogram of the number of languages per country. The height of
each rectangle (called ‘bin’) indicates the number of data points contained within the
range covered by the rectangle, what is called the ‘bin width’. In this case, there are

Figure 1.1. � Histogram of the number of languages per country; data taken from Nettle
(1999)

15034-2313q-3pass-r02.indd 19 10/3/2019 5:50:40 PM

20  Introduction to Base R

more than 50 countries that have between 0 and 100 languages. There are about 10
countries that have between 100 and 200 languages, and so on. There seems to be only
a handful of countries with more than 700 languages.

The following command creates this plot, using the Langs column of the Nettle
(1999) dataset.9

hist(nettle$Langs)

Let’s rerun the histogram command and make the bins have a certain color, say, salmon.

hist(nettle$Langs, col = 'salmon')

The col argument is an optional argument of the hist() function. See what hap-
pens if you change the color to, say, 'steelblue'. If you wanted to have a look at
what colors are pre-specified in R, type in colors() to the console. This is another
function that doesn’t require any arguments, similar to ls(), list.files(), or
getwd(). The code below shows only the first six colors.

head(colors())

[1] "white" "aliceblue" "antiquewhite"
[4] "antiquewhite1" "antiquewhite2" "antiquewhite3"

These colors are the named colors of R. You can also specify hexadecimal color
codes. Check what happens if you supply '#DD4433' to the col argument.

1.13. � Installing, Loading, and Citing Packages
R is a community project with a massive amount of content made available by its
active user base. New functions are assembled into libraries called ‘packages’, which
can be installed using the install.packages() function. The following code
installs the car package (Fox & Weisberg, 2011).

install.packages('car')

Once a package is installed,10 you can load it like this:

library(car)

  9 � These language counts are a considerable abstraction, as it’s not always clear whether a linguistic vari-
ety is best considered as a dialect of a language, or whether it should be counted as its own language.

10 � There are many reasons why the installation of a package may fail. Installation problems can usually
be fixed with the help of Google searches. A lot of the time, installation problems result from having
an outdated R version. Alternatively, there may have been a new R version released recently, and the
package developers are lagging behind in updating their package to the new version.

15034-2313q-3pass-r02.indd 20 10/3/2019 5:50:40 PM

Introduction to Base R  21

This makes the functions from the car package available in the current R session.
If you close R and reopen it, you will have to reload the package. That is, packages are
only loaded for a single session.

For reproducibility and to acknowledge the valuable work of the respective devel-
opers, it’s important to cite each package and report its package version, which is
demonstrated here for car:

citation('car')$textVersion

[1] "John Fox and Sanford Weisberg (2011). An {R} Compan-
ion to Applied Regression, Second Edition. Thousand Oaks
CA: Sage. URL: http://socserv.socsci.mcmaster.ca/jfox/
Books/Companion"

packageVersion('car')

[1] '3.0.0'

Speaking of citing, this is how you can retrieve the citation and version infor-
mation for R itself. These should also be reported. The commands below provide
abbreviated output thanks to the indexing statements '$textVersion' and
 '$version.string'. You can also simply run the citation() and R.Version()
functions without these statements, which returns more extensive outputs.

citation()$textVersion

[1] "R Core Team (2018). R: A language and environment for
statistical computing. R Foundation for Statistical Com-
puting, Vienna, Austria. URL https://www.R-project.org/."

R.Version()$version.string

[1] "R version 3.5.0 (2018-04-23)"

1.14. � Seeking Help
There’s a help file for any R function. To access it, just put a question mark in front of
a function’s name, as demonstrated here for the seq() function, which is for generat-
ing number sequences.

?seq

I haven’t introduced you to this function yet, but perhaps you can figure out how it
works from the examples listed at the bottom of the help file (you will use this func-
tion in later chapters).

If you forgot a function name and wanted to search for it from within R, you can
use the handy apropos() function. For example, running apropos('test')

15034-2313q-3pass-r02.indd 21 10/3/2019 5:50:40 PM

22  Introduction to Base R

will display all functions that have the string 'test' in their name. In the following,
I only show you the first six of these:

head(apropos('test'))

[1] ".valueClassTest" "ansari.test"
[3] "bartlett.test" "binom.test"
[5] "Box.test" "chisq.test"

Often, copy-and-pasting warning or error messages from the console into
Google will immediately direct you to a solution to any problems you may
encounter. If that doesn’t help, you can ask others for help, such as via stackover-
flow.com. However, asking good questions is not easy and it’s essential that you
perform extensive Google searches before asking others.

Perhaps most importantly, when you encounter an error or warning message,
you should never think that you are stupid. R is quite quirky and learning how to
program isn’t easy. If you encounter a problem, rest assured that there are many
others who ran into the same problem. You should be aware of the fact that even
very advanced R users constantly encounter error and warning messages. For
example, the very experienced R programmers Wickham and Grolemund (2007:
7) write: “I have been writing R code for years, and every day I still write code
that doesn’t work!" This should show you that there’s no reason to feel stupid
when you run into a problem.

1.15. � A Note on Keyboard Shortcuts
You are heavily advised to spend some time learning R/RStudio keyboard short-
cuts. When wanting to be efficient with data, the mouse is your enemy! Your future
self is going to thank you (yet again!) for the countless hours saved thanks to key-
board shortcuts. Here are some very handy shortcuts that I use frequently:

Shortcut	 Action
Ctrl/Command + N	 open new script
Ctrl/Command + Enter	 run current line (send from script to console)
Alt/Option + Minus ‘-’	 insert ‘<-’
Ctrl/Command + Alt/Option + I	� insert code chunk (R markdown, see Chapter 2)
Ctrl/Command + Shift + M	 insert pipe (tidyverse, see Chapter 2)

These shortcuts are specific to R/RStudio. On top of that, I hope that you already
are accustomed to using general text editing shortcuts. If not, here are some very use-
ful shortcuts:

Shortcut	 Action
Shift + Left/Right	 highlight subsection of text
Alt/Option + Left/Right (Mac)	 move cursor by a word

15034-2313q-3pass-r02.indd 22 10/3/2019 5:50:40 PM

DolanA
Highlight
curly quotes please

Introduction to Base R  23

Ctrl + Left/Right (Windows)	 move cursor by a word
Command + Left/Right (Mac)	 move cursor to beginning/end of line
Home/End (Windows & Linux)	 move cursor to beginning/end of line
Ctrl + K	 delete line from position of cursor onwards
Ctrl/Command + C	 copy
Ctrl/Command + X	 cut
Ctrl/Command + V	 paste
Ctrl/Command + Z	 undo
Ctrl/Command + A	 select all

Incorporating these and other shortcuts into your workflow will save you valuable
time and mental energy. In the long run, knowing lots of shortcuts will help you expe-
rience ‘flow’ when coding.

1.16. � Your R Journey: The Road Ahead
I have just taught you the very basics of R. Think about learning R as learning a
foreign language. Obviously, you cannot learn a whole language in a single chapter!
And, of course, you’re bound to forget things, which is OK! It’s important that you
persevere through your mistakes. When you get stuck, take a break and resume later.
Let’s talk about the most common problems you will encounter:

•	 You wrote something in your script, but you have forgotten to execute the com-
mand in R (that is, it hasn’t been sent to the console yet).

•	 If you get an error message which says “object not found", you likely have
mistyped the name of the object, or you forgot to execute some assignment
command.

•	 If you get a “function not found" message, you either mistyped the function
name, or the relevant package hasn’t been loaded yet.

•	 Warning messages also frequently arise from not knowing what type of object
you are working with: What’s the object’s dimensionality (rows, columns)? What
type of vector are you dealing with (e.g., character, factor, numeric, logical)?

•	 Sometimes you may run into syntax issues, such as having forgotten a comma
between arguments inside a function, or having forgotten a closing bracket.

•	 Many or most errors result from some sort of typo. Extensive use of the copy-
and-paste shortcuts prevents many typos.

As a general rule of thumb, you should never believe R does as intended (Burns,
2011). It is good to develop a habit of constantly checking the objects in your work-
ing environment. You should ask yourself questions such as ‘Did the function I just
executed actually produce the intended result?’ or ‘What is actually contained in the
object that I’m currently working with?’

From now on, it’s just learning-by-doing and trial-and-error. I will teach you some
more R in the next chapter. After that, the focus will be on the stats side of things. As
you go along, many commands will be repeated again and again. The same way it
helps you to repeat words when learning the vocab of a foreign language, R ‘words’
need to be used extensively before they sink in. And, also like learning a foreign lan-
guage, there’s no way around continuous practice. I’ll help you along the way.

15034-2313q-3pass-r02.indd 23 10/3/2019 5:50:40 PM

DolanA
Highlight
curly quotes please

DolanA
Highlight
curly quotes please

24  Introduction to Base R

1.17. � Exercises

1.17.1. � Exercise 1: Familiarizing Yourself with Base Plotting

Type the following commands into a script and then execute them together:

plot(x = 1, y = 1, type = 'n',
 xlim = c(-2, 2), ylim = c(-2, 2))
points(x = -1, y = 1)
segments(x0 = -0.5, y0 = -1, x1 = 0.5, y1 = -1)

The first line opens up an empty plot with a point at the coordinates x = 1 and
y = 1. The type = 'n' argument means that this point is not actually displayed.
xlim and ylim specify the plot margins.

The points() function plots a single point at the specified coordinates. The
segments() function plots a line segment. The beginning of the line segment is
given by the arguments x0 and y0. The end points are given by x1 and y1.

What is displayed in your plotting window is actually a one-eyed smiley. By adding
additional points() and segments(), can you create a more elaborate smiley?
This exercise will help to wrap your head around working with coordinate systems.

1.17.2. � Exercise 2: Swirl

The interactive swirl package teaches you R inside R.

install.packages('swirl')
library(swirl)
swirl()

Complete the first four modules of the R programming course. If you have extra
time, complete the first five courses of the Exploratory Data Analysis course. Through-
out your R journey, you can come back to swirl at any time and complete more
courses.

1.17.3. � Exercise 3: Spot-the-Error #1

Type the following two lines of code into your R script, exactly as they are printed here
on the page. Then execute them. This will result in two error messages.

x_values <- c(1, 2 3, 4, 5, 6, 7, 8, 9)
mean_x <- mean(X_values)

Each line contains one error. Can you find them and correct them?11

11  I thank Márton Sóskuthy for this exercise idea.

15034-2313q-3pass-r02.indd 24 10/3/2019 5:50:41 PM

Introduction to Base R  25

1.17.4. � Exercise 4: Spot-the-Error #2

Why does the following command return an NA value?

x <- c(2, 3, 4, '4')
mean(x)

Can you use the function as.numeric() to solve this problem?

1.17.5. � Exercise 5: Spot-the-Error: #3

The following line of code tries to extract the row from the nettle data frame that
contains information on the country Yemen. Why does this return an error and can
you fix this?

nettle[nettle$Country = 'Yemen', ]

1.17.6. � Exercise 6: Indexing Data Frames

Gillespie and Lovelace (2017: 4) say that “R is notorious for allowing users to solve
problems in many ways". In this section, you will learn a bunch of different ways of
extracting information from the same data frame. Some of these ways are redundant,
but knowing multiple paths to the same goal gives you flexibility in how to approach
data analysis problems. This exercise also teaches you how indexing statements can
be used recursively, stacked on top of each other.

head(nettle) # display first 6 rows

 Country Population Area MGS Langs
1 Algeria 4.41 6.38 6.60 18
2 Angola 4.01 6.10 6.22 42
3 Australia 4.24 6.89 6.00 234
4 Bangladesh 5.07 5.16 7.40 37
5 Benin 3.69 5.05 7.14 52
6 Bolivia 3.88 6.04 6.92 38

Next, the following statements extract information from this data frame. You
haven’t been taught all of these ways of indexing yet. However, try to understand what
the corresponding code achieves and I’m sure you’ll be able to figure it out.

Importantly, think about what is being extracted first, only then type in the com-
mand to see whether the output matches your expectations.

nettle[2, 5]

15034-2313q-3pass-r02.indd 25 10/3/2019 5:50:41 PM

DolanA
Highlight
curly quotes please

26  Introduction to Base R

nettle[1:4, ]

nettle[1:4, 1:2]

nettle[nettle$Country == 'Bangladesh', ]

nettle[nettle$Country == 'Bangladesh', 5]

nettle[nettle$Country == 'Bangladesh', ] [, 5]

nettle[nettle$Country == 'Bangladesh', ] $Langs

nettle[nettle$Country == 'Bangladesh', 'Langs']

nettle[1:4, ] $Langs[2]

nettle[1:4, c('Country', 'Langs')]

head(nettle[,])

15034-2313q-3pass-r02.indd 26 10/3/2019 5:50:41 PM

2	� The Tidyverse and
Reproducible R Workflows

2.1. � Introduction
This chapter serves two goals. First, I will introduce you to the tidyverse, a modern way
of doing R. Second, I will introduce you to reproducible research practices. As part of
this, I will talk about ways efficient workflows for analysis projects. A disclaimer is
necessary: This chapter is very technical. If you feel overwhelmed, don't worry, as the
concepts discussed here will come up again and again throughout the book.

The tidyverse is a modern way of doing R that is structured around a set of pack-
ages created by Hadley Wickham and colleagues. The idea is to facilitate interactive
data analysis via functions that are more intuitive and ‘tidier’ than some of the corre-
sponding base R functions. Let’s begin by installing and loading in the tidyverse
package (Wickham, 2017).

install.packages('tidyverse')

library(tidyverse)

The tidyverse package is actually just a handy way of installing and loading lots of
packages at the same time; namely, all those packages that are part of the tidyverse.1
I will walk you through some, but not all, of the core members and some of their
most useful functions. In this chapter, you will learn about tibble (Müller & Wick-
ham, 2018), readr (Wickham, Hester, & François, 2017), dplyr (Wickham, Fran-
çois, Henry, & Müller, 2018), magrittr (Milton Bache & Wickham, 2014), and
ggplot2 (Wickham, 2016).

1	 You could also load the individual packages from the tidyverse separately. These are the tidyverse
packages discussed in this chapter:
library(tibble)
library(readr)
library(dplyr)
library(magrittr)
library(ggplot2)

15034-2313q-3pass-r02.indd 27 10/3/2019 5:50:41 PM

28  The Tidyverse

2.2. � tibble and readr
Tibbles from the tibble package (Müller & Wickham, 2018) are a modern take on
data frames. They are like base R data frames, but better. Specifically, they confer the
following four advantages:

•	 For text, tibbles default to character vectors rather than factor vectors, which is
useful because character vectors are easier to manipulate.

•	 When typing the name of a tibble into the console, only the first ten rows are
displayed, saving you a lot of head() function calls.

•	 Tibbles additionally display row and column numbers, saving you a lot of
nrow() and ncol() function calls.

•	 Finally, displaying a tibble also reveals how each column in a tibble is coded
(character vector, numeric vector, etc.).

All of these appear to be minor cosmetic adjustments. Together, however, these
small changes end up saving you lots of time (and typing!). To see tibbles in action,
let’s load in a data frame and convert it to a tibble with as_tibble():

Load data:

nettle <- read.csv('nettle_1999_climate.csv')

Convert data frame to tibble:

nettle <- as_tibble(nettle)

Type the name of the tibble:

nettle

A tibble: 74 x 5
 Country Population Area MGS Langs
 <fct> <dbl> <dbl> <dbl> <int>
 1 Algeria 4.41 6.38 6.6 18
 2 Angola 4.01 6.1 6.22 42
 3 Australia 4.24 6.89 6 234
 4 Bangladesh 5.07 5.16 7.4 37
 5 Benin 3.69 5.05 7.14 52
 6 Bolivia 3.88 6.04 6.92 38
 7 Botswana 3.13 5.76 4.6 27
 8 Brazil 5.19 6.93 9.71 209
 9 Burkina Faso 3.97 5.44 5.17 75
10 CAR 3.5 5.79 8.08 94
... with 64 more rows

Notice that, besides printing out only ten rows, the number of rows (74) and columns
(5) is stated, as well as information about vector classes. The <dbl> stands for ‘dou-
ble’, which is computer-science-speak for a particular type of numeric vector—just

15034-2313q-3pass-r02.indd 28 10/3/2019 5:50:41 PM

The Tidyverse  29

treat doubles as numeric vectors. The <int> stands for ‘integer’; <fct> stands for
‘factor’. But wait, didn’t I just tell you that tibbles default to character vectors? Why
is the Country column coded as a factor? The culprit here is the base R function
read.csv(), which automatically interprets any text column as factor. So, before
the data frame was converted into a tibble, the character-to-factor conversion has
already happened.

To avoid this and save yourself the conversion step, use read_csv()from the
readr package (Wickham et al., 2017) (notice the underscore in the function name).

nettle <- read_csv('nettle_1999_climate.csv')

Parsed with column specification:
cols(
 Country = col_character(),
 Population = col_double(),
 Area = col_double(),
 MGS = col_double(),
 Langs = col_integer()
)

The read_csv() function tells you how columns have been ‘parsed’, that is, how
particular columns from the file were converted to particular vector types. In addition,
read_csv()creates tibbles by default. Let’s verify this:

nettle

A tibble: 74 x 5
 Country Population Area MGS Langs
 <chr> <dbl> <dbl> <dbl> <int>
 1 Algeria 4.41 6.38 6.6 18
 2 Angola 4.01 6.1 6.22 42
 3 Australia 4.24 6.89 6 234
 4 Bangladesh 5.07 5.16 7.4 37
 5 Benin 3.69 5.05 7.14 52
 6 Bolivia 3.88 6.04 6.92 38
 7 Botswana 3.13 5.76 4.6 27
 8 Brazil 5.19 6.93 9.71 209
 9 Burkina Faso 3.97 5.44 5.17 75
10 CAR 3.5 5.79 8.08 94
... with 64 more rows

Notice how the Country column is now coded as a character vector, rather than
as a factor vector.

In addition, read_csv() runs faster than read.csv(), and it provides a pro-
gress bar for large datasets. For files that are not comma-separated files (.csv), use
read_delim(), for which the delim argument specifies the type of separator. The
following command loads the tab-delimited ‘example_file.txt’:

15034-2313q-3pass-r02.indd 29 10/3/2019 5:50:41 PM

30  The Tidyverse

x <- read_delim('example_file.txt', delim = '\t')

Parsed with column specification:
cols(
 amanda = col_integer(),
 jeannette = col_integer(),
 gerardo = col_integer()
)

x

A tibble: 2 x 3
 amanda jeannette gerardo
 <int> <int> <int>
1 3 1 2
2 4 5 6

2.3. � dplyr
The dplyr package (Wickham et al., 2018) is the tidyverse’s workhorse for changing
tibbles. The filter() function filters rows. For example, the following command
reduces the nettle tibble to only those rows with countries that have more than 500
languages.

filter(nettle, Langs > 500)

A tibble: 2 x 5
 Country Population Area MGS Langs
 <chr> <dbl> <dbl> <dbl> <int>
1 Indonesia 5.27 6.28 10.7 701
2 Papua New Guinea 3.58 5.67 10.9 862

Alternatively, you may be interested in the data for a specific country, such as Nepal:

filter(nettle, Country == 'Nepal')

A tibble: 1 x 5
 Country Population Area MGS Langs
 <chr> <dbl> <dbl> <dbl> <int>
1 Nepal 4.29 5.15 6.39 102

So, the filter() function takes the input tibble as its first argument. The sec-
ond argument is a logical statement that you use to put conditions on the tibble, thus
restricting the data to a subset of rows.

The select() function is used to select columns. Just list all the columns you
want to select, separated by commas. Notice that the original column order does not
need to be obeyed, which means that select() can also be used to reorder tibbles.

15034-2313q-3pass-r02.indd 30 10/3/2019 5:50:41 PM

The Tidyverse  31

select(nettle, Langs, Country)

A tibble: 74 x 2
 Langs Country
 <int> <chr>
 1 18 Algeria
 2 42 Angola
 3 234 Australia
 4 37 Bangladesh
 5 52 Benin
 6 38 Bolivia
 7 27 Botswana
 8 209 Brazil
 9 75 Burkina Faso
10 94 CAR
... with 64 more rows

Using the minus sign in front of a column name excludes that column.

select(nettle, -Country)

A tibble: 74 x 4
 Population Area MGS Langs
 <dbl> <dbl> <dbl> <int>
 1 4.41 6.38 6.6 18
 2 4.01 6.1 6.22 42
 3 4.24 6.89 6 234
 4 5.07 5.16 7.4 37
 5 3.69 5.05 7.14 52
 6 3.88 6.04 6.92 38
 7 3.13 5.76 4.6 27
 8 5.19 6.93 9.71 209
 9 3.97 5.44 5.17 75
10 3.5 5.79 8.08 94
... with 64 more rows

Use the colon operator to select consecutive columns, such as all the columns from
Area to Langs.

select(nettle, Area:Langs)

A tibble: 74 x 3
 Area MGS Langs
 <dbl> <dbl> <int>
 1 6.38 6.6 18
 2 6.1 6.22 42
 3 6.89 6 234

15034-2313q-3pass-r02.indd 31 10/3/2019 5:50:41 PM

32  The Tidyverse
 4 5.16 7.4 37
 5 5.05 7.14 52
 6 6.04 6.92 38
 7 5.76 4.6 27
 8 6.93 9.71 209
 9 5.44 5.17 75
10 5.79 8.08 94
... with 64 more rows

To summarize the two dplyr functions introduced so far: filter() is used to
filter rows; select() is used to select columns.

The rename() function can be used to change the name of existing columns. Each
argument is structured as follows: ‘New column name equals old column name.’ For
example, the following code shortens the name of the Population column to Pop.

nettle <- rename(nettle, Pop = Population)

nettle

A tibble: 74 x 5
 Country Pop Area MGS Langs
 <chr> <dbl> <dbl> <dbl> <int>
 1 Algeria 4.41 6.38 6.6 18
 2 Angola 4.01 6.1 6.22 42
 3 Australia 4.24 6.89 6 234
 4 Bangladesh 5.07 5.16 7.4 37
 5 Benin 3.69 5.05 7.14 52
 6 Bolivia 3.88 6.04 6.92 38
 7 Botswana 3.13 5.76 4.6 27
 8 Brazil 5.19 6.93 9.71 209
 9 Burkina Faso 3.97 5.44 5.17 75
10 CAR 3.5 5.79 8.08 94
... with 64 more rows

The mutate() function can be used to change the content of a tibble. For exam-
ple, the following command creates a new column Lang100, which is specified to be
the Langs column divided by 100.

nettle <- mutate(nettle, Lang100 = Langs / 100)

nettle

A tibble: 74 x 6
 Country Population Area MGS Langs Lang100
 chr> <dbl> <dbl> <dbl> <int> <dbl>
 1 Algeria 4.41 6.38 6.6 18 0.18
 2 Angola 4.01 6.1 6.22 42 0.42

15034-2313q-3pass-r02.indd 32 10/3/2019 5:50:41 PM

The Tidyverse  33

 3 Australia 4.24 6.89 6 234 2.34
 4 Bangladesh 5.07 5.16 7.4 37 0.37
 5 Benin 3.69 5.05 7.14 52 0.52
 6 Bolivia 3.88 6.04 6.92 38 0.38
 7 Botswana 3.13 5.76 4.6 27 0.27
 8 Brazil 5.19 6.93 9.71 209 2.09
 9 Burkina Faso 3.97 5.44 5.17 75 0.75
10 CAR 3.5 5.79 8.08 94 0.94
... with 64 more rows

Finally, arrange() can be used to order a tibble in ascending or descending
order. Let’s use this function to look at the countries with the largest and the smallest
number of languages.

arrange(nettle, Langs) # ascending

A tibble: 74 x 6
 Country Population Area MGS Langs Lang100
 <chr> <dbl> <dbl> <dbl> <int> <dbl>
 1 Cuba 4.03 5.04 7.46 1 0.01
 2 Madagascar 4.06 5.77 7.33 4 0.04
 3 Yemen 4.09 5.72 0 6 0.06
 4 Nicaragua 3.6 5.11 8.13 7 0.07
 5 Sri Lanka 4.24 4.82 9.59 7 0.07
 6 Mauritania 3.31 6.01 0.75 8 0.08
 7 Oman 3.19 5.33 0 8 0.08
 8 Saudi Arabia 4.17 6.33 0.4 8 0.08
 9 Honduras 3.72 5.05 8.54 9 0.09
10 UAE 3.21 4.92 0.83 9 0.09
... with 64 more rows

arrange(nettle, desc(Langs)) # descending

A tibble: 74 x 6
 Country Population Area MGS Langs Lang100
 <chr> <dbl> <dbl> <dbl> <int> <dbl>
 1 Papua New Guinea 3.58 5.67 10.9 862 8.62
 2 Indonesia 5.27 6.28 10.7 701 7.01
 3 Nigeria 5.05 5.97 7 427 4.27
 4 India 5.93 6.52 5.32 405 4.05
 5 Cameroon 4.09 5.68 9.17 275 2.75
 6 Mexico 4.94 6.29 5.84 243 2.43
 7 Australia 4.24 6.89 6 234 2.34
 8 Zaire 4.56 6.37 9.44 219 2.19
 9 Brazil 5.19 6.93 9.71 209 2.09
10 Philippines 4.8 5.48 10.3 168 1.68
... with 64 more rows

15034-2313q-3pass-r02.indd 33 10/3/2019 5:50:41 PM

34  The Tidyverse

2.4. � ggplot2
The ggplot2 package (Wickham, 2016) is many people’s favorite package for plot-
ting. The logic of ggplot2 takes some time to get used to, but once it clicks you’ll
be able to produce beautiful plots very quickly.

Let’s use ggplot2 to graphically explore the relation between climate and lin-
guistic diversity. Nettle (1999) discusses the intriguing idea that linguistic diversity is
correlated with climate factors. The proposal is that countries with lower ecological
risk have more different languages than countries with higher ecological risk. A sub-
sistence farmer in the highlands of Papua New Guinea lives in a really fertile environ-
ment where crops can be grown almost the entire year, which means that there is little
reason to travel. When speakers stay local and only speak with their immediate neigh-
bors, their languages can accumulate differences over time which would otherwise be
levelled through contact.

Nettle (1999) measured ecological risk by virtue of a country’s ‘mean growing
season’ (listed in the MGS column), which specifies how many months per year one
can grow crops.

Let’s plot the number of languages (Langs) against the mean growing season
(MGS). Type in the following command and observe the result, which is shown in
Figure 2.1 (left plot)—a detailed explanation will follow.

ggplot(nettle) +
 geom_point(mapping = aes(x = MGS, y = Langs))

Like most other functions from the tidyverse, the ggplot() function takes a tib-
ble as its first argument. However, the rest of how this function works takes some
time to wrap your head around. In particular, you have to think about your plot in a
different way, as a layered object, where the data is the substrate, with different visual
representations (shapes, colors, etc.) layered on top.

Figure 2.1. � Left: scatterplot of the number of languages per mean growing season; right:
the same scatterplot but with text; each data point is represented by the respec-
tive country name

15034-2313q-3pass-r02.indd 34 10/3/2019 5:50:41 PM

The Tidyverse  35

In this case, the data are MGS and Langs taken from the nettle tibble. However,
the same data could be displayed in any number of different ways. How exactly the
data is visualized is specified by what is called a ‘geom’, a geometric object. Each of
the plots that you commonly encounter in research papers (histograms, scatterplots,
bar plots, etc.) has their own geom, that is, their own basic shape. In the case of scatter-
plots, for example, the data is mapped to points in a 2D plane (as seen in Figure 2.1).
In the case of bar plots (see below), the data is mapped to the height of the bars. As you
proceed in this book, you will learn about other geoms, such as geom_boxplot (the
data is mapped to boxes) or geom_text (the data is mapped to text).

So, the geom indicates the primary shape which is used to visually repre-
sent the data from a tibble. The code above adds a point geom to the plot via the
geom_point() function. For plotting points in a two-dimensional plane, one needs
both x and y values. The function aes() specifies the ‘aesthetic mappings’, which
characterize which aspect of the data is mapped onto which aspect of the geom. In
this case, MGS is mapped onto the x-values, and Langs is mapped onto the y-values.
Think about it this way: the geometric objects are flying on top of the data substrate,
but they need to know which specific aspects of the data to draw from, and this is
specified by the aesthetic mappings.

Now, I recognize that the logic of the ggplot2 package may appear confusing at
this stage. I was definitely confused when I encountered ggplot2 for the first time.
As you proceed and type in more different plotting commands, you will slowly get
the hang of things.

Let’s learn a bit more about the aesthetic mappings. It turns out that you can either
specify them inside a geom, or inside the main ggplot() function call. The latter allows
multiple geoms to draw from the same mappings, which will become useful later. Notice,
furthermore, that I omitted the argument name ‘mapping’.

ggplot(nettle, aes(x = MGS, y = Langs)) +
 geom_point()

Finally, let’s create a plot where instead of points, the country names are displayed
at their respective x, y coordinates. Let’s see what happens when geom_point() is
replaced with geom_text().

ggplot(nettle, aes(x = MGS, y = Langs)) +
 geom_text()

Error: geom_text requires the following missing aesthet-
ics: label

The problem here is that geom_text() needs an additional aesthetic mapping.
In particular, it needs to know which column is mapped to the actual text (label)
shown in the plot, which is given in the Country column.

ggplot(nettle, aes(x = MGS, y = Langs, label = Country)) +
 geom_text()

15034-2313q-3pass-r02.indd 35 10/3/2019 5:50:41 PM

winterb
Highlight
Needs to be the same font as the "y" in y-values at the end of this line

36  The Tidyverse

The result is shown in the right plot of Figure 2.1. To save a plot, use ggsave()
after a ggplot2 command. For example, the following command saves the text plot
into the file nettle.png with the width:height ratio of 8:6 (measurement units are
given in inches by default).

ggsave('nettle.png', width = 8, height = 6)

To create the two-plot arrangement displayed in Figure 2.1, use the gridExtra
package (Auguie, 2017).

Create plots and save them in plot1 and plot2:

plot1 <- ggplot(nettle) +
 geom_point(mapping = aes(x = MGS, y = Langs))

plot2 <- ggplot(nettle,
 aes(x = MGS, y = Langs, label = Country)) +
 geom_text()

Plot double plot:

library(gridExtra)
grid.arrange(plot1, plot2, ncol = 2)

The respective plots are saved into two objects, plot1 and plot2, which are
then used as arguments of the grid.arrange() function. The additional argument
ncol = 2 specifies a plot arrangement with two columns.

2.5. � Piping with magrittr
A final component of the tidyverse relevant to us is the ‘pipe’, which is represented by
the symbol sequence ‘%>%’. This functionality is unlocked by the tidyverse package
magrittr (Milton Bache & Wickham, 2014).

Imagine a conveyor belt where the output of one function serves as the input to another
function. The following code chunk exemplifies such a pipeline. The tibble nettle is
first piped to the filter() function, which reduces the tibble to only those countries
where one can grow crops for more than eight months of the year (MGS > 8). The filtered
tibble is then piped to ggplot(), which results in a truncated version of Figure 2.1.

Plotting pipeline with %>%:

nettle %>%
 filter(MGS > 8) %>%
 ggplot(aes(x = MGS, y = Langs, label = Country)) +
 geom_text()

15034-2313q-3pass-r02.indd 36 10/3/2019 5:50:41 PM

The Tidyverse  37

Notice that the tibble containing the data only had to be mentioned once at the
beginning of the pipeline, which saves a lot of typing. The true benefits of pipelines
will be felt more strongly later on in this book.

2.6. � A More Extensive Example: Iconicity and the Senses
This section guides you through the first steps of an analysis that was published
in Winter, Perlman, Perry, and Lupyan (2017). This study investigated iconicity,
the resemblance between a sign’s form and its meaning. For example, the words
squealing, banging, and beeping resemble the sounds they represent (also known as
onomatopeia, a specific form of iconicity). It has been proposed that sound concepts
are more expressible via iconic means than concepts related to the other senses,
such as sight, touch, smell, or taste. This may be because auditory ideas are easier
to express via imitation in an auditory medium, speech.

To test this idea, we used sensory modality ratings from Lynott and Connell (2009),
paired with our own set of iconicity ratings (Perry, Perlman, Winter, Massaro, &
Lupyan, 2017; Winter et al., 2017). Let’s load in the respective datasets and have a
look at them.

icon <- read_csv('perry_winter_2017_iconicity.csv')
mod <- read_csv('lynott_connell_2009_modality.csv')

Let’s check the content of both files, starting with the icon tibble. Depending
on how wide your console is, more or fewer columns will be shown. Also, some
numbers may be displayed differently. For example, the raw frequency 1041179 of
the article a could be displayed in the abbreviated form 1.04e6 (this notation will
be explained in more detail in Chapter 11, fn. 1).

icon

A tibble: 3,001 x 8
 Word POS SER CorteseImag Conc Syst Freq
 <chr> <chr> <dbl> <dbl> <dbl> <dbl> <int>
 1 a Grammati… NA NA 1.46 NA 1.04e6
 2 abide Verb NA NA 1.68 NA 1.38e2
 3 able Adjective 1.73 NA 2.38 NA 8.15e3
 4 about Grammati… 1.2 NA 1.77 NA 1.85e5
 5 above Grammati… 2.91 NA 3.33 NA 2.49e3
 6 abrasive Adjective NA NA 3.03 NA 2.30e1
 7 absorbe… Adjective NA NA 3.1 NA 8.00e0
 8 academy Noun NA NA 4.29 NA 6.33e2
 9 accident Noun NA NA 3.26 NA 4.15e3
10 accordi… Noun NA NA 4.86 NA 6.70e1
... with 2,991 more rows, and 1 more variable:
Iconicity <dbl>

15034-2313q-3pass-r02.indd 37 10/3/2019 5:50:41 PM

38  The Tidyverse

The only three relevant columns for now are Word, POS, and Iconicity. Let’s
reduce the tibble to these columns using select().

icon <- select(icon, Word, POS, Iconicity)

icon

A tibble: 3,001 x 3
 Word POS Iconicity
 <chr> <chr> <dbl>
 1 a Grammatical 0.462
 2 abide Verb 0.25
 3 able Adjective 0.467
 4 about Grammatical -0.1
 5 above Grammatical 1.06
 6 abrasive Adjective 1.31
 7 absorbent Adjective 0.923
 8 academy Noun 0.692
 9 accident Noun 1.36
10 accordion Noun –0.455
... with 2,991 more rows

The dataset contains 3,001 words and their iconicity ratings. The POS column con-
tains part-of-speech tags which were generated based on the SUBTLEX subtitle cor-
pus of English (Brysbaert, New, & Keuleers, 2012). What about the content of the
Iconicity column? In our rating task, we asked participants to rate words on a
scale from −5 (‘the word sounds like the opposite of what it means’) to +5 (‘the word
sounds exactly like what it means’). The iconicity value of each word is an average of
the ratings of multiple native speakers. Let’s have a look at the range of this variable.

range(icon$Iconicity)

[1] -2.800000 4.466667

So, the lowest iconicity score is −2.8, the largest is +4.5 (rounded). This perhaps
suggests that the iconicity ratings are skewed towards the positive end of the scale. To
get a more complete picture, let’s draw a histogram (depicted in Figure 2.2). Execute
the following ggplot2 code snippet—an explanation will follow.

ggplot(icon, aes(x = Iconicity)) +
 geom_histogram(fill = 'peachpuff3') +
 geom_vline(aes(xintercept = 0), linetype = 2) +
 theme_minimal()

'stat_bin()' using 'bins = 30'. Pick better value with
'binwidth'.

The warning message on binwidth can safely be ignored in this case. The code
pipes the icon tibble to ggplot(). To draw a histogram, you just need only one
aesthetic, namely, an aesthetic that maps the data to the relevant x-values. The fill

15034-2313q-3pass-r02.indd 38 10/3/2019 5:50:41 PM

The Tidyverse  39

of the histogram is specified to have the color 'peachpuff3'. geom_vline()
plots a vertical line at 0, which is specified by the xintercept. The optional argu-
ment linetype = 2 makes the line dashed. Finally, adding theme_minimal()
to the plot makes everything look nice. Themes are high-level plotting commands that
change various aspects of the entire plot, such as the background color (notice the gray
tiles have become white) and the grid lines. To see the effects of themes, explore what
happens if you rerun the plot with theme_linedraw() or theme_light()
instead. Themes save you a lot of typing, because you can avoid having to set all
graphical parameters individually.

Next, let’s check the mod tibble, which contains the modality norms from Lynott
and Connell (2009).

mod

A tibble: 423 x 9
 PropertyBritish Word DominantModality Sight Touch
 <chr> <chr> <chr> <dbl> <dbl>
 1 abrasive abrasive Haptic 2.89 3.68
 2 absorbent absorbent Visual 4.14 3.14
 3 aching aching Haptic 2.05 3.67
 4 acidic acidic Gustatory 2.19 1.14
 5 acrid acrid Olfactory 1.12 0.625
 6 adhesive adhesive Haptic 3.67 4.33
 7 alcoholic alcoholic Gustatory 2.85 0.35

Figure 2.2. � Histogram of iconicity values from Winter et al. (2017) and Perry et al. (2017)

15034-2313q-3pass-r02.indd 39 10/3/2019 5:50:41 PM

40  The Tidyverse
 8 alive alive Visual 4.57 3.81
 9 amber amber Visual 4.48 0.524
10 angular angular Visual 4.29 4.10
... with 413 more rows, and 4 more variables:
Sound <dbl>, Taste <dbl>, Smell <dbl>,
ModalityExclusivity <dbl>

One feature of tibbles is that they only show as many columns as fit into your console.
To display all columns, type the following (the extended output is not shown in the book):

mod %>% print(width = Inf) # output not shown in book

The width argument allows you to control how many columns are displayed (thus,
expanding or shrinking the ‘width’ of a tibble). By setting the width to the special
value Inf (infinity), you display as many columns as there are in your tibble.

You may also want to display all rows:

mod %>% print(n = Inf) # output not shown

The argument for rows is called n in line with the statistical convention to use the
letter ‘N’ to represent the number of data points.

For the present purposes, only the Word and DominantModality columns are
relevant to us. The columns labeled Sight, Touch, Sound, Taste, and Smell
contain the respective ratings for each sensory modality (on a scale from 0 to 5). Just
as was the case with the iconicity rating study, these are averages over the ratings
from several different native speakers. The content of the DominantModality
column is determined by these ratings: for example, the first word, abrasive, is cat-
egorized as ‘haptic’ because its touch rating (3.68) is higher than the ratings for any
of the other sensory modalities. Again, let’s reduce the number of columns with
select().2

mod <- select(mod, Word, DominantModality:Smell)

mod

A tibble: 423 x 7
 Word Dominant Sight Touch Sound Taste Smell
 Modality
 <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 abrasive Haptic 2.89 3.68 1.68 0.579 0.579
 2 absorbent Visual 4.14 3.14 0.714 0.476 0.476
 3 aching Haptic 2.05 3.67 0.667 0.0476 0.0952
 4 acidic Gustatory 2.19 1.14 0.476 4.19 2.90
 5 acrid Olfactory 1.12 0.625 0.375 3 3.5

2	 It’s usually a good idea to spend considerable time getting the data in shape. The more time you
spend preparing your data, the less trouble you will have later.

15034-2313q-3pass-r02.indd 40 10/3/2019 5:50:41 PM

The Tidyverse  41

 6 adhesive Haptic 3.67 4.33 1.19 0.905 1.76
 7 alcoholic Gustatory 2.85 0.35 0.75 4.35 4.3
 8 alive Visual 4.57 3.81 4.10 1.57 2.38
 9 amber Visual 4.48 0.524 0.143 0.571 0.857
10 angular Visual 4.29 4.10 0.25 0.0476 0.0476
... with 413 more rows

To save yourself some typing further down the line, use rename() to shorten the
name of the DominantModality column.

mod <- rename(mod, Modality = DominantModality)

Of course, you could have just changed the name in the spreadsheet before loading
it into R. However, many times you work with large data files that are generated by
some piece of software (such as E-Prime for psycholinguistic experiments, or Qual-
trics for web surveys), in which case you want to leave the raw data untouched. It is
usually a good idea to perform as much of the data manipulation as possible from
within R. Even something as simple as renaming a column is a manipulation of the
data, and it should be recorded in your scripts for the sake of reproducibility (more on
this topic later).

When engaging with new datasets, it’s usually a good idea to spend considerable
time familiarizing yourself with their contents. For bigger datasets, it makes sense to
check some random rows with the dplyr function sample_n().

sample_n(mod, 4) # shows 4 random rows, use repeatedly

A tibble: 4 x 7
 Word Modality Sight Touch Sound Taste Smell
 <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 thumping Auditory 2.62 2.52 3.90 0.143 0.190
2 transparent Visual 4.81 0.619 0.25 0.143 0.143
3 empty Visual 4.75 3.6 1.65 0.25 0.15
4 spicy Gustato… 1.67 0.429 0.333 5 4.24

To assess whether the sensory modalities differ in iconicity, it is necessary to merge
the two tibbles. The left_join() function call below takes two tibbles as argu-
ment, ‘joining’ the second tibble (‘to the right’) into the first tibble (‘to the left’).

both <- left_join(icon, mod)

Joining, by = "Word"

The left_join() function is smart and sees that both tibbles contain a Word
column, which is then used for matching the respective data. If the identifiers for
matching have different names, you can either rename the columns so that they match,
or you can use the by argument (check the ?left_join() help file).

Next, let’s filter the dataset so that it only includes adjectives, verbs, and nouns
(there are very few adverbs and grammatical words, anyway). For this, the very useful

15034-2313q-3pass-r02.indd 41 10/3/2019 5:50:41 PM

42  The Tidyverse

%in% function comes in handy. The function needs two vectors to compare, and it
then checks whether the elements of the second vector are matched in the first vector.3

both <- filter(both,
 POS %in% c('Adjective', 'Verb', 'Noun'))

To put this command into plain English, one might paraphrase it as follows: ‘Of the
both tibble, filter only those rows for which the content of the POS column is in the
set of adjectives, verbs, and nouns.’

Our main research question is whether iconicity ratings differ by modality. One
option is to visualize this relationship with a boxplot, which will be explained in more
detail in Chapter 3. A boxplot shows distributions as a function of categorical vari-
able on the x-axis, as shown in Figure 2.3 (left plot). The following command maps
Modality to the x-axis and Iconicity to the y-axis. Finally, an additional aes-
thetic maps the Modality categories onto the fill argument, which assigns each
sensory modality a unique color.

ggplot(both,
 aes(x = Modality, y = Iconicity, fill = Modality)) +
 geom_boxplot() + theme_minimal()

The boxplot shows that the bulk of ‘auditory’ words (sound-related) have higher
iconicity ratings than words for the other senses. ‘Haptic’ words (touch-related) also

3	 To understand the set function %in%, check out what the following commands do:
c('A', 'B', 'C') %in% c('A', 'A', 'C', 'C')
… and then the reverse:
c('A', 'A', 'C', 'C') %in% c('A', 'B', 'C')
Basically, the %in% function is necessary when you want to use ‘==’, but there are two things on

the right-hand side of the equation. For the time being, it’s OK to think of %in% as a generalized ‘==’.

Figure 2.3. � Left: Boxplot of iconicity ratings by sensory modality; right: Bar plot of word
counts showing the over-representation of visual words in English

15034-2313q-3pass-r02.indd 42 10/3/2019 5:50:41 PM

The Tidyverse  43

have high iconicity ratings, and so on (for a discussion of these results, see Winter
et al., 2017).

The right-most box displays the distribution of iconicity ratings for those words that
couldn’t be matched to a sensory modality because the word wasn’t rated in Lynott
and Connell’s (2009) study. Let’s exclude these missing values using filter().4
The is.na() function inside the following filter() command returns TRUE for
any data point that is missing, and FALSE for any data point that is complete. The
exclamation sign ‘!’ inverts these logical values so that you only get the complete
cases, that is, those cases that are not NA.5 The code below also uses piping. The
both tibble is piped to filter(), the output of which is then piped to ggplot().

both %>% filter(!is.na(Modality)) %>%
 ggplot(aes(x = Modality, y = Iconicity,
 fill = Modality)) +
 geom_boxplot() + theme_minimal()

Let’s explore another aspect of this data, which is discussed in more detail in Liev-
ers and Winter (2017) and Winter, Perlman, and Majid (2018). In particular, it has been
proposed that some sensory modalities are easier to talk about than others (Levinson &
Majid, 2014), and that the English language makes more visual words available to its
speakers than words for the other sensory modalities (see also Majid & Burenhult, 2014).
To investigate this feature of the English language, have a look at the counts of words per
sensory modality with count().

both %>% count(Modality)

A tibble: 6 x 2
 Modality n
 <chr> <int>
1 Auditory 67
2 Gustatory 47
3 Haptic 67
4 Olfactory 24
5 Visual 202
6 <NA> 2389

Ignoring the NAs for the time being, this tibble shows that there are overall more
visual words. This was already noted by Lynott and Connell (2009).

Let’s make a bar plot of these counts. As before, the filter() function is used to
exclude NAs. The geom for bar plots is geom_bar(). You need to specify the addi-
tional argument stat = 'identity'. This is because the geom_bar() function

4	 Generally, you should be concerned about missing values. In particular, you always need to ask why
certain values are missing.

5	 Alternatively, you could use the function complete.cases(), which returns TRUE
for complete cases and FALSE for missing values. In that case, you wouldn’t have to use the
negation operation ‘!’. That said, I prefer !is.na() because it takes less time to type than
complete.cases() …

15034-2313q-3pass-r02.indd 43 10/3/2019 5:50:41 PM

44  The Tidyverse

likes to perform its own statistical computations by default (such as counting). With the
argument stat = 'identity', you instruct the function to treat the data as is. Fig-
ure 2.4 (right plot) shows the resulting bar plot.

both %>% count(Modality) %>%
 filter(!is.na(Modality)) %>%
 ggplot(aes(x = Modality, y = n, fill = Modality)) +
 geom_bar(stat = 'identity') + theme_minimal()

To exemplify why you had to specify stat = 'identity' in the last code
chunk, have a look at the following code, which reproduces Figure 2.4 in a different
way.

both %>% filter(!is.na(Modality)) %>%
 ggplot(aes(Modality, fill = Modality)) +
 geom_bar(stat = 'count') + theme_minimal()

In this case, the geom_bar() function does the counting. This pipeline is a bit
more concise since you don’t have to create an intervening table of counts.

2.7. � R Markdown
Chapter 1 introduced you to .R script files. Now you will learn about R markdown
files, which have the extension .Rmd. R markdown files have more expressive power
than regular R scripts, and they facilitate the reproducibility of your code. Basically,
an R markdown file allows you to write plain text alongside R code. Moreover, you
can ‘knit’ your analysis easily into a html file, which is done via the knitr package
(Xie, 2015, 2018). The resulting html file contains your text, R code, and output. It is
extremely useful to have all of this in one place. For example, when you write up your
results, it’ll be much easier to read off the numbers from a knitted markdown report,
rather than having to constantly re-create the output in the console, which is prone to
error. Moreover, the report can easily be shared with others. This is useful when col-
laborating—if your collaborators also know R, they can not only see the results, but
they’ll also know how you achieved these results. R markdown is a standard format for
sharing your analysis on publicly accessible repositories, such as GitHub and the Open
Science Framework.

To create an R markdown file in RStudio, click ‘File’, ‘New File’, and then ‘R
Markdown …’ For now, simply leave the template as it is. See what happens if
you press the ‘knit’ button (you will be asked to save the file first). This will cre-
ate an html report of your analysis that shows the code, as well as the markdown
content.

Let me guide you through some R markdown functionality. First, you can write plain
text the same way you would do in a text editor. Use this text to describe your analysis.
In addition, there are code chunks, which always begin with three ' ' ' (backward ticks,
or the grave accent symbol). The R code goes inside the chunk. Any R code outside of
code chunks won’t be executed when knitting the file.

15034-2313q-3pass-r02.indd 44 10/3/2019 5:50:41 PM

The Tidyverse  45

' ' '{r}
R code goes in here
' ' '

You can specify additional options for each code chunk. For example, the code
chunk below will print results, but not messages (such as warning messages, or pack-
age loading messages), and it will also ‘cache’ the results of running the code chunk.
Caching means that the result of all computations conducted in this code chunk will
be saved to memory files outside of the markdown script. This way, the computations
don’t have to be re-executed the next time you knit the markdown file. The argument
cache = TRUE is useful when a particular code chunk takes a lot of time to run.

' ' '{r message = FALSE, cache = TRUE}
R code goes in here
' ' '

The following code chunk, named myplot, does not print the R code
(echo = FALSE). The additional code chunk options specify the width and height
of the plot that will be displayed in the knitted html file.

' ' '{r echo = FALSE, fig.width = 8, fig.height = 6}
plotting commands go in here
' ' '

2.8. � Folder Structure for Analysis Projects
One big advantage of R markdowns is that when opening up an .Rmd file in RStudio,
the working directory is always set to the location of the file. This facilitates repro-
ducibility because somebody does not have to change the working directory to fit the
folder structure of their own machine. It’s generally frowned upon to use setwd()
in a script for this reason, since any use of setwd()is specific to one’s machine.
Instead, wouldn’t it be much easier if the user who wants to reproduce your analy-
sis just needs to download the entire project folder, with no fiddling of setwd()
required? R markdown scripts make this possible.

In general, it is good to structure your project in a consistent manner around folders.
The R markdown scripts then operate relatively from within that folder structure, not
absolutely specific to the folder structure on your machine. At a bare minimum, there
should be a data folder, a scripts folder, and a figures folder (see Figure 2.4).

Let’s say you are working within the ‘analysis.Rmd’ file in the ‘scripts’ folder, aim-
ing to load the ‘mydata.csv’ file from the ‘data’ folder. The following command would
achieve this:

mydf <- read_csv('../data/mydata.csv')

The ‘..’ instructs the markdown file to jump one folder up in the hierarchy of fold-
ers, which is the overarching ‘project’ folder in this case. From there, the ‘/data/’

15034-2313q-3pass-r02.indd 45 10/3/2019 5:50:41 PM

46  The Tidyverse

bit instructs the markdown script to look for the ‘data’ folder. The logic is similar for
saving a ggplot from within a script in the ‘scripts’ to the ‘figures’ folder:

ggsave('../figures/figure1.png')

2.9. � Readme Files and More Markdown
The main project folder of any data analysis project should always contain a readme
file describing the overall structure of the analysis. For this, markdown files (.md) are
useful, as these files are often interpreted by data sharing repositories such as GitHub
or the Open Science Framework (OSF). You can create markdown files with any text
editor, such as the built-in ‘Notes’ on Macs or ‘Notepad’ on PCs.

Let’s talk about some markdown features, which can also be used in R markdown
files (.Rmd): Single hashtags ‘#’ or double hashtags ‘##’ display the corresponding
text as a major or minor title on GitHub.

My major title
My minor title

Text enclosed by two stars ‘**’ will be displayed in bold; text enclosed by one star
‘*’ will be displayed in italics.

bold text
italic text

Lines beginning with hyphens will be displayed as bullet points.

- bullet point 1
- bullet point 2

Here’s an example of what the beginning of a README.md file for a project could
look like:

Title of my statistical analysis

-  **Study design & data collection:** My friend
-  **Statistical Analysis:** Bodo Winter

Figure 2.4. � Folder structure for a data analysis project; black squares represent data files

15034-2313q-3pass-r02.indd 46 10/3/2019 5:50:41 PM

The Tidyverse  47

-  **Date:** 24/12/18

Libraries required for this analysis:

-  tidyverse
-  lme4

Script files contained in this analysis:

-  preprocessing.Rmd : Getting the data into shape
-  analysis.Rmd : Linear mixed effects model analysis

Ideally, there’s also a ‘codebook’ for every dataset which details the content of
every column. In particular, it is useful if there is a full description of which values are
contained within each column, such as, ‘dialect: categorical variable,
assumes one of the three values Brummie, Geordie, Scouse’.

It is important to use the features introduced in this section in R markdown files to
give your analysis structure. For example, you can use ‘#’ and ‘##’ to highlight major
and minor sections of your analysis.6 As will be explained in the next section, code
cleanliness is more than just cosmetics—it is intimately tied to the reproducibility of
an analysis.

2.10. � Open and Reproducible Research
Scientific progress is cumulative—it builds on past achievements. However, cumula-
tive progress is only possible if results are both ‘replicable’ and ‘reproducible’. What’s
the difference between replicability and reproducibility? In short: replicability charac-
terizes the ability to replicate a study, that is, being able to conduct the same study again
(with new data). Reproducibility characterizes the more basic requirement of being
able to reproduce a researcher’s analysis of a given dataset on one’s own machine.

A study is replicable if another researcher can read the methods section of a paper
and has enough information to replicate the study with new participants. Recently,
researchers have found that many famous results failed to replicate, which has led to
the ‘replication crisis’ (Open Science Collaboration, 2015; Nieuwland et al., 2018).
Linguistics doesn’t have a replication crisis yet, but it’s looming around the corner.
There already are important linguistic results that failed to replicate, such as the idea
that there is a bilingual advantage in certain cognitive processing tasks (Paap & Green-
berg, 2013; de Bruin, Bak, & Della Sella, 2015). Other linguistic findings that failed to
replicate involve sentence processing (Nieuwland et al., 2018; Stack, James, & Wat-
son, 2018) and embodied language understanding (Papesh, 2015).

There are many reasons why a study may not replicate. One reason, however, has to
do with a lack of reproducibility of existing research. For any study, it should be pos-
sible for other researchers to obtain the same results if they were given the same data.
The problem is that statistical analysis—as will be pointed out repeatedly throughout
this book—is a strikingly subjective process (this may surprise you). For example,

6	 Note that inside a code chunk, the hashtag ‘#’ is interpreted as a comment. Outside of a code chunk,
it is interpreted as a title.

15034-2313q-3pass-r02.indd 47 10/3/2019 5:50:41 PM

48  The Tidyverse

even expert analysts will come to different conclusions when given the same data-
set (Silberzahn et al., 2018). There are myriads of decisions to make in an analysis,
what some people call “researcher degrees of freedom" (Simmons, Nelson, & Simon-
sohn, 2011), and what others call “the garden of forking paths" (Gelman & Loken,
2014). Without the ability to trace what a researcher did in their analysis, these choices
remain hidden. Reproducibility requires us to lay all of this open.

A fully reproducible study gives you the data and the code. When you execute the
code on your machine, you will get exactly the same results. However, reproducibility
is a gradable notion, with some studies being more reproducible than others. There are
several things that increase a study’s reproducibility:

•	 The minimal requirement for reproducible research is that the data and scripts are
shared (‘open data, open code’). The scientific community, including the linguis-
tic community, needs to rethink what it means to ‘publish’ a result. The following
mindset may be helpful to induce change and to assure replicability and repro-
ducibility in the long run: without publishing the data and code, a publication is
incomplete. The scientific process hasn’t finished unless the data and code are
provided as well.

•	 The choice of software influences reproducibility. R is more reproducible than
SPSS, STATA, SAS, Matlab, or other proprietary software, because it’s free,
open-source, and platform-independent. Whenever possible, use software that is
accessible to everybody.

•	 More thoroughly documented code is more reproducible, as other researchers
will have an easier time tracing your steps.

•	 R markdown scripts facilitate reproducibility because they make extensive docu-
mentation easier via the ability to incorporate plain text, and because they allow
avoiding setwd() (see discussion above). In addition, the ability to knit a final
report of your analysis allows researchers (including yourself) to more quickly
see the results together with the code that has produced the results.

•	 Use publicly accessible platforms such as OSF and GitHub7 rather than a jour-
nal’s online supplementary materials. It’s not in the publisher’s interest to store
your data for eternity, and it’s well known that publishers’ websites are subject to
change, which leads to link rot.

When people first hear about the idea of open reproducible research, they may be
worried. There are a few common objections that are worth addressing at this stage
(see also Houtkoop, Chambers, Macleod, Bishop, Nichols, & Wagenmakers, 2018).

•	 I don’t want to my results or ideas stolen (I don’t want to get ‘scooped’). This
is a very common worry. Paradoxically, perhaps, making everything open from
the get-go actually makes it less likely to get scooped. Publishing on a publicly

7	 GitHub and OSF play well together. For my analysis projects, I use an OSF repository as the over-
arching repo, linking to a corresponding GitHub repo which stores the data and code. OSF will
become more important in years to come, as more and more researchers are ‘pre-registering’ their
studies (see Nosek & Lakens, 2014).

15034-2313q-3pass-r02.indd 48 10/3/2019 5:50:41 PM

DolanA
Highlight
curly quotes please

DolanA
Highlight
curly quotes please

The Tidyverse  49

accessible repository allows you to claim precedence, which makes scooping
more difficult.8

•	 I fear retaliation or loss of reputation if somebody finds an error, or provides an
alternative analysis with different conclusions. This is a very common fear, and
I think it’s safe to say that most scientists have worried about this at some point in
their career. However, this objection gets it the wrong way around. You are more
likely to be criticized if somebody finds out that something is wrong and you have
not shared your data and code. When making your materials openly accessible,
people are less likely to ascribe deliberate wrongdoing to you. Keeping your data
behind locked doors is only going to make you look more suspicious. You and
your research will appear more trustworthy if you share everything right away.

•	 I cannot actually share the data for ethical reasons. Certain datasets are impos-
sible to share for very good reasons. However, it’s usually the case that the final
steps of a data analysis can be shared, such as the summary data that was used to
construct a statistical model. In general, it is your responsibility that the data is
made anonymous so that it can be appropriately shared without ethical concerns.

•	 I fear that companies may use my data for wrongdoing. It is good to be concerned
about big-data-harvesting that is done with bad intentions, especially when it
involves the recognition of identities. That said, almost all of the data dealt with in
linguistics is anonymous or, if not, it can easily be anonymized. Moreover, the data
of most studies is often of little use to companies. In particular, most experimental
studies are quite constrained to very particular, theoretically involved hypotheses
that cannot easily be commercialized. Things are different if you are dealing with
non-anonymized data, or such data sources as social media. However, in general,
compared to the overwhelming benefits of sharing data and code in the face of the
replication crisis, corporate misuse is a very minor concern. If you are truly wor-
ried about corporate data pirates, consider licensing your data accordingly.

•	 I feel embarrassed about my code. This is a very understandable concern—don’t
worry, as you’re not alone! The first code that I put up online a few years ago looks
absolutely horrible to me right now. People understand that everybody’s coding
practice is different, and that different researchers have different levels of statisti-
cal sophistication. Nobody will look at your code and laugh at it. Instead, they will
appreciate the willingness to share your materials, even if it doesn’t look snazzy.

•	 Sharing data and code is not a common practice in my field. My response to this
is: not yet! Things are clearly heading this way, and more and more journals are
implementing policies for data sharing—many already have! Journals such as
PLOS One and the Royal Society journals are trendsetters in this respect. In addi-
tion: if it’s not yet a common practice in your field, why not make it a common
practice? You can lead the change.

Putting scientific progress aside, if you wanted some purely cynical reasons for
‘going open’ and reproducible, you might want to know that studies with open data
and open code have higher citation rates (Piwowar & Vision, 2013).

8	 Moreover, let’s face it: many linguists are working on such highly specific topics that getting scooped
is of little concern. However, if you are working on something that many other people are currently
working on as well, use a publicly accessible repository to be the first to get it out there!

15034-2313q-3pass-r02.indd 49 10/3/2019 5:50:41 PM

50  The Tidyverse

Finally, since all kinds of disciplines (including the language sciences) are currently
moving towards open and reproducible methods, it makes sense for you to adopt open
and reproducible methods early on, so that you are not overwhelmed when this becomes
a general requirement. Rather than being late adopters, let’s try to be ahead of the curve
and at the same time further progress in science!

2.11. � Exercises

2.11.1. � Review

Review the tidyverse style guide …

http://style.tidyverse.org/

. . . and the RStudio keyboard shortcut list:

https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts

Think about which shortcuts you want to adopt in your own practice (experiment!).
After having incorporated a few shortcuts into your workflow, return to the shortcut
list and think about which other shortcuts to adopt.

2.11.2. � Create and Knit a Markdown File

Create a markdown file with the title ‘Analysis of linguistic diversity’. In the first R
code chunk, load in the tidyverse package and the Nettle (1999) dataset. Using the
sum() function, compute the sum of languages across the entire dataset. Describe
each step with a few short sentences of plain text outside of the code chunks. Then,
knit the file to an html file and check the output.

2.11.3. � Subsetting Data Frames with Tidyverse Function

This exercise uses the nettle data frame to explore different ways of indexing using
filter() and select(). First, load in the nettle data:

nettle <- read.csv('nettle_1999_climate.csv')

head(nettle) # display first 6 rows

 Country Population Area MGS Langs
1 Algeria 4.41 6.38 6.60 18
2 Angola 4.01 6.10 6.22 42
3 Australia 4.24 6.89 6.00 234
4 Bangladesh 5.07 5.16 7.40 37
5 Benin 3.69 5.05 7.14 52
6 Bolivia 3.88 6.04 6.92 38

15034-2313q-3pass-r02.indd 50 10/3/2019 5:50:41 PM

The Tidyverse  51

Next, attempt to understand what the following commands do. Then execute them
in R and see whether the output matches your expectations.

filter(nettle, Country == 'Benin')

filter(nettle, Country %in% c('Benin', 'Zaire'))

select(nettle, Langs)

filter(nettle, Country == 'Benin') %>% select(Langs)

filter(nettle, Country == 'Benin') %>%
select(Population:MGS)

filter(nettle, Langs > 200)

filter(nettle, Langs > 200, Population < median(Population))

2.11.4. � Extended Exercise: Creating a Pipeline

Execute the following code in R (you may omit the comments for now) and then read
the explanation below.

Reduce the nettle tibble to small countries:

smallcountries <- filter(nettle, Population < 4)

Create categorical MGS variable:

nettle_MGS <- mutate(smallcountries,
	 MGS_cat = ifelse(MGS < 6, 'dry', 'fertile'))

Group tibble for later summarizing:

nettle_MGS_grouped <- group_by(nettle_MGS, MGS_cat)

Compute language counts for categorical MGS variable:

summarize(nettle_MGS_grouped, LangSum = sum(Langs))

A tibble: 2 x 2
 MGS_cat LangSum
 <chr> <int>
1 dry 447
2 fertile 1717

This code reduces the nettle tibble to small countries (Population < 4).
The resulting tibble, smallcountries, is changed using the ifelse() function.

15034-2313q-3pass-r02.indd 51 10/3/2019 5:50:42 PM

52  The Tidyverse

In this case, the function splits the dataset into countries with high and low ecological
risk, using six months as a threshold. The ifelse() function spits out ‘dry’ when
MGS < 6 is TRUE and ‘fertile’ when MGS < 6 is FALSE. Then, the resulting
tibble is grouped by this categorical ecological risk measure. As a result of the group-
ing, the subsequently executed summarize() function knows that summary statis-
tics should be computed based on this grouping variable.

This code is quite cumbersome! In particular, there are many intervening tibbles
(smallcountries, nettle_MGS, and nettle_MGS_grouped) that might
not be used anywhere else in the analysis. For example, the grouping is only neces-
sary so that the summarize() function knows what groups to perform summary
statistics for. These tibbles are fairly dispensable. Can you condense all of these steps
into a single pipeline where the nettle tibble is first piped to filter(), then to
mutate(), then to group_by(), and finally to summarize()?

15034-2313q-3pass-r02.indd 52 10/3/2019 5:50:42 PM

3.1. � Models
This book teaches you how to construct statistical models. A model is a simplified rep-
resentation of a system. For example, the map of a city represents a city in a simplified
fashion. A map providing as much detail as the original city would not only be impos-
sible to construct, it would also be pointless. Humans build models, such as maps and
statistical models, to make their lives simpler.

Imagine having conducted a reading time experiment that involves measurements
from 200 participants. If you wanted to report the outcome of your experiment to an
audience, you wouldn’t want to talk through each and every data point. Instead, you
report a summary, such as ‘The 200 participants read sentences with an average speed
of 2.4 seconds’, thus saving your audience valuable time and mental energy. This
chapter focuses on such summaries of numerical information, specifically, the mean,
the median, quantiles, the range, and the standard deviation. The mean is a summary
of a distribution. What exactly is a distribution?

3.2. � Distributions
Imagine throwing a single die 20 times in a row. For a regular die, there are six pos-
sible outcomes. For any one throw, each face is just as likely to occur as any other.
Let’s perform 20 throws and note down how frequently each face occurs. The face
‘1’ comes up 2 times, ‘2’ might come up 5 times, and so on. The result of tallying all
counts is a ‘frequency distribution’, which associates each possible outcome with a
particular frequency value. The corresponding histogram is shown in Figure 3.1a (for
an explanation of histograms, see Chapter 1.12).

The distribution in Figure 3.1a is an empirically observed distribution because it
is based on a set of 20 actual throws of a die (‘observations’). Figure 3.1b on the
other hand is a theoretical distribution, one that isn’t attested in any specific dataset.
Notice how the y-axis in Figure 3.1b represents probability rather than frequency.
Probabilities range from 0 to 1, with 0 indicating that a given event never occurs and
1 indicating that a given event always occurs. The theoretical probability distribution
in Figure 3.1b answers the question: how probable is each outcome? In this case, all
outcomes are equally probable, namely, 1 divided by 6, which is about 0.17. In other

3	� Descriptive Statistics, Models,
and Distributions

15034-2313q-3pass-r02.indd 53 10/3/2019 5:50:42 PM

54  Descriptive Statistics

words, each face is expected to occur one sixth of the time, although any particular set
of throws may deviate from this theoretical expectation.

Commonly used theoretical distributions have names. The particular distribution
shown in Figure 3.1b is the ‘discrete uniform distribution’. It is a ‘uniform’ distribu-
tion because the probability is uniformly spread across all possible outcomes. It is
furthermore a ‘discrete’ distribution because there are only six particular outcomes
and no in-betweens.

Applied statistics involves both empirical distributions and theoretical distributions.
The theoretical distributions are tools that help modeling empirically observed data.
Most models constructed in applied statistics assume that the data has been generated
by a process following a certain distribution. In order to model various types of data,
you have to learn about various theoretical distributions. This chapter introduces the
normal distribution. Later chapters introduce the Bernoulli distribution (Chapter 12)
and the Poisson distribution (Chapter 13).

3.3. � The Normal Distribution
One of the most common distributions in statistics is the ‘normal distribution’,
also known as the ‘bell curve’ due to its characteristic bell shape. A more techni-
cal name for this distribution is the Gaussian distribution, after the mathematician
Carl Friedrich Gauss. The normal distribution is a distribution for continuous data,
centered symmetrically around the mean with the bulk of data lying close to the
mean.

Figure 3.2a shows three distributions of actual data that are approximately nor-
mally distributed. To make this example more concrete, you can imagine that these
are language test scores from three different classrooms. Each of the three distribu-
tions has a different mean. Classroom A has a mean of 10 (this class performed badly
overall), B has a mean of 40, and C has a mean of 80 (this class performed very
well). In such a scenario, you can think of the mean as specifying the ‘location’ of

Figure 3.1. � (a) An empirically observed distribution based on 20 throws of a die;
(b) A theoretical distribution displaying the expected probabilities for an infi-
nite number of throws

15034-2313q-3pass-r02.indd 54 10/3/2019 5:50:42 PM

Descriptive Statistics  55

a distribution on the x-axis. That is, the mean tells you how large or small a set of
numbers is overall.1

The distributions in Figure 3.2a also differ in terms of ‘spread’. In particular, the
distribution for classroom B is wider than the other two distributions. This means
that there are more students farther away from the mean in this classroom. Students
in this classroom are more different from each other than the students in the other

1	 The notation x (‘x bar’) is often used to represent the mean of a set of numbers x. The formula for the

mean is x
x
N

= ∑ . Formulas are summary formats for computational procedures. The ∑x in the
numerator stands for the procedure that sums up all the numbers. The sum is then divided by N, which
represents how many numbers there are. For example, imagine collecting three response durations
in a psycholinguistic experiment, specifically 300ms, 200ms, and 400ms.The sum of these numbers

is 900ms, with N = 3, which yields 900
3

300ms ms= .

Figure 3.2. � (a) Three distributions for groups of students with 100 students each; the data
is random data that was generated based on an underlying normal distribution
with the specified means and standard deviations. (b) Two normal distribu-
tions with different parameters; the parameter μ (‘mu’) specifies the location
of the distribution on the number line; σ (‘sigma’) specifies the spread; the
highlighted areas under the curve show the 68% and 95% intervals

15034-2313q-3pass-r02.indd 55 10/3/2019 5:50:45 PM

56  Descriptive Statistics

classrooms. The standard deviation (SD) is used to summarize this spread. Although
the actual formula has some quirks,2 it is OK for the most part to think of the standard
deviation as representing the average distance from the mean. Visually, larger standard
deviations correspond to flatter histograms that fan out farther away from the mean.

While the mean and standard deviation can be computed for any data, these two numbers
have special meaning in the context of the normal distribution: they are the distribution’s
‘parameters’. A parameter is a property of a distribution. Changing the parameter changes
the look of the distribution. Changing the mean moves the normal distribution along the
number line, and changing the standard deviation stretches or squeezes the distribution.

Figure 3.2b shows the normal distribution for two different sets of parameters. The
y-axis label says ‘probability density’, which means that the height of the graph indi-
cates how probable certain values are. The area under each bell curve adds up to 1.0.
You may also have noticed that I tacitly switched notation. Before, I used Roman letters
to represent the mean (M or x) and the standard deviation (SD or s). In Figure 3.2b,
I used the Greek letters μ (‘mu’) and σ (‘sigma’) instead. It is conventional to use Greek
letters when talking about the parameters of theoretical distributions. When talking of
empirically observed data, it is conventional to use Roman letters instead. This is not
just an arbitrary convention—you will later see that this notation is quite important.

Figure 3.2b also shows an important property of the normal distribution: the areas
highlighted with ‘0.34’ add up to a probability of 0.34, and so on. Together, the two
middle parts add up to p = 0.68. If you were to randomly draw numbers from this
distribution, 68% of the time, you would end up with a number that is between −1 and
+1 standard deviations. If you add the next two areas (striped) to this, the probability
mass under the curve adds up to p = 0.95. Thus, if you were to draw random data
points from this distribution, 95% of the time you would end up with a number that is
between −2 and +2 standard deviations.

The 68%–95% ‘rule’ allows you to draw a mental picture of a distribution from the
mean and standard deviation alone, granted the distribution is approximately normally
distributed. Let us apply the rule to a dataset from Warriner, Kuperman, and Brysbaert
(2013), who asked native English speakers to rate the positivity or negativity of words
on a scale from 1 to 9 (‘emotional valence’). In their paper, the authors report that the
mean of the ratings was 5.06, with a standard deviation of 1.27. Assuming normality,
you can expect 68% of the data to lie between 3.79 and 6.33 (5.06 − 1.27, 5.06 + 1.27).
You can furthermore expect 95% of the data to lie between 2.52 and 7.6. To calculate

2	 The formula for the standard deviation requires that you calculate the mean first, as the standard
deviation measures the spread from the mean. The formula works as follows: you calculate each
data point’s difference from the mean, square that value, and subsequently sum up the squared dif-
ferences. This ‘sum of squares’ is then divided by N minus 1 (so 99, if you have 100 data points).
Subsequently, you take the square root of this number, which yields the standard deviation. There
are reasons for why the square root has to be used and why one has to divide by N − 1 (rather
than by N) that I will not go into here. The abbreviated formula for the standard deviation of a set

of numbers, x, is: SD
x x
n

=
−()
−

∑ 2

1
. When you see a formula like this, it is important to try to

understand it piece by piece, and to first focus on those symbols that you recognize. For example,
you may observe in this formula that there’s an x , which represents the mean, and that this number
is subtracted from each x-value. Mathematicians use formulas not to make things more difficult, but
to make things easier for them. A formula encapsulates a lot of information in a neat way.

15034-2313q-3pass-r02.indd 56 10/3/2019 5:50:48 PM

Descriptive Statistics  57

this, you have to double the standard deviation 1.27, which yields 2.54. Then you add
and subtract this number from the mean (5.06 − 2.54, 5.06 + 2.54).

Finally, it is worth noting that, because the mean and standard deviation work so
nicely together, it’s generally a good idea to report both. In particular, means without
a measure of spread are not very informative.

3.4. � Thinking of the Mean as a Model
I invite you to think of the mean as a model of a dataset. For one, this highlights the
compressive nature of the mean (given that models are simplified representations). Sec-
ond, it highlights that the mean is a representation of something, namely, a distribution.

Moreover, thinking of the mean as a model highlights that the mean can be used to
make predictions. For example, Warriner et al. (2013) rated ‘only’ 14,000 English words,
even though there are many more words in the English language. The word moribund is
one of the words that has not been rated. In the absence of any information, can we pre-
dict its emotional valence value? Our best guess for this word’s value is the mean of the
current sample, 5.06. In this sense, the mean allows making predictions for novel words.

Introductory statistics courses often distinguish between ‘descriptive statistics’ and
‘inferential statistics’. Whereas descriptive statistics is understood to involve things
like computing summary statistics and making plots, inferential statistics is generally
seen as those statistics that allow us to make ‘inferences’ about populations of inter-
est, such as the population of all English speakers, or the ‘population’ of all English
words. However, the distinction between descriptive and inferential statistics is not as
clear-cut. In particular, any description of a dataset can be used to make inferences.
Moreover, all inferential statistics are based on descriptive statistics.

In fact, in some sense, you have already performed some form of inferential sta-
tistics in this chapter. The Warriner et al. (2013) dataset can be treated as a sample of
words that is taken from the population of all English words. In applied statistics, we
almost always deal with samples as the population is generally not available to us. For
example, it may be infeasible to test all English speakers in a psycholinguistic experi-
ment and hence we have to resort to a small subset of English speakers to estimate
characteristics of the population.

Samples are used to estimate population parameters.3 The distinction between
sample estimates and population parameters is enshrined in mathematical notation.
As mentioned above, parameters are conventionally represented with Greek letters;
sample estimates, with Roman letters. Then, one can say that the sample mean x
estimates the population parameter μ. Similarly, the sample standard deviation s esti-
mates the population parameter σ. Other texts may use the caret symbol for this dis-
tinction, in which case μ estimates μ, and σ estimates σ.

From now on, whenever you see means and standard deviations in published papers,
ask yourself questions such as the following. What is this mean estimating? What is
the relevant population of interest? In later chapters, you will quantify the degree of
uncertainty with which sample estimates reflect population parameters.

3	 This book is focused on a branch of statistics that is called ‘parametric statistics’. Just so you’ve
heard about it: there is a whole other branch of statistics that deals with ‘non-parametric statistics’,
which as the name suggests, does not estimate parameters.

15034-2313q-3pass-r02.indd 57 10/3/2019 5:50:49 PM

58  Descriptive Statistics

3.5. � Other Summary Statistics: Median and Range
The mean and the standard deviation are just two ways of compressing data. Another
summary statistic is the median, which is the halfway point of the data (50% of the data
are above the median; 50% of the data are below). In contrast, the mean is the ‘balance
point’, which you can think of as a pair of scales: an extreme value shifts the mean, just
as a heavy object tips a pair of scales. This is exemplified in Figure 3.3.4

The fact that the median doesn’t move when the position of the square is changed in
Figure 3.3 can be seen as an advantage, as well as a disadvantage. The mean incorpo-
rates more information because it cares about the actual values of the data points. The
median only cares about its position in an ordered sequence.

The median is sometimes reported because it is more robust to variations in extreme
values than the mean. For example, most people have relatively low incomes, but
some people (such as Bill Gates) have incredibly high incomes. Such extremely rich
people skew the mean upwards, but they don’t shift the median up as much.

Another summary statistic for the spread is the range, which is the distance between
the smallest and the largest data point. For the Warriner et al. (2013) dataset, sub-
tracting the minimum (1.26) from the maximum (8.53) yields the range 7.27. As a
general measure of spread, the range is not as useful because it exclusively relies on
the two most extreme numbers, ignoring all others. If one of these numbers happens

4	 For an uneven number of data points, there is a true middle number. However, for an even number
of data points, there are two numbers in the middle. What is the halfway point in this case? The
median is defined to be the mean of the two middle numbers, e.g., for the numbers 1, 2, 3, and 4, the
median is 2.5.

Figure 3.3. � Six data points on the number line. The data point represented by the square
shifts between the two datasets, pulling the mean upwards. The median stays
put because the fact that 50% of the data is on either side hasn’t changed by
altering the value.

15034-2313q-3pass-r02.indd 58 10/3/2019 5:50:49 PM

Descriptive Statistics  59

to change, the range will change as well. However, many times it is useful to know
specifically what the smallest and the largest number in a dataset are.

3.6. � Boxplots and the Interquartile Range
Now that you have a better understanding of the median, let’s return to the boxplot,
which was briefly introduced but not explained in Chapter 2. Box-and-whisker plots
are very common in many areas of science, and you will find them in many linguistic
papers as well. To understand the meaning of a boxplot, you need to learn about the
‘interquartile range’.

Figure 3.4 shows the distribution of emotional valence scores for the 14,000 words
from the Warriner et al. (2013) rating study. Recall that the sample mean of this distribu-
tion is M = 5.06. The median is 5.2 and is shown as the thick black line in the middle of
the box of the boxplot. The extent of the box covers 50% of the data, that is, 25% of the
data above and below the median. The ends of the box have specific names: they are the
first, second, and third ‘quartile’. You are probably more familiar with percentiles. For
example, if someone received a test score that is in the 80th percentile, 80% of the test
scores are below that person’s score. Q1 is the first quartile, which is the 25th percentile.
The next quartile is Q2, the median. Finally, 75% of the data fall below Q3, the third
quartile.

For the Warriner et al. (2013) dataset, Q1 is the number 4.25 (25% of all data points
fall below this value), and Q3 is 5.95 (75% fall below this value). The difference
between Q1 and Q3 yields the ‘interquartile range’, in this case, 5.95−4.25 = 1.7. This
number corresponds to the length of the box seen in Figure 3.4.

What’s the meaning of the whiskers extending from the box? Let’s focus on the right
whisker, the one that is extending from Q3 towards larger emotional valence scores.
This whisker ends at the largest number that falls within a distance of 1.5 times the

Figure 3.4.  A histogram of the emotional valence rating data

15034-2313q-3pass-r02.indd 59 10/3/2019 5:50:49 PM

60  Descriptive Statistics

interquartile range from Q3. You can think of standing at Q3 and swinging a lasso as
wide as 1.5 times the interquartile range. The largest number that you catch—the score
for the word happiness in this case—is the extent of the whisker. The logic is the same for
the lower whisker, except that you are looking for the smallest number that falls within
a distance of 1.5 * IQR.

The data points that fall outside of the whiskers are indicated by dots. For example,
the single dot to the right of the right whisker is the word vacation. Words that fall out-
side the range of the whiskers are often called outliers, but I prefer the term ‘extreme
value’, since ‘outlier’ suggests that something is qualitatively different from the other
data points, which is often used to justify exclusions.5 Using the term ‘extreme value’
implies that the same underlying process has generated the extremity.

If ‘maximum of Q IQR3 1 5+ . * ’ and ‘minimum of Q IQR1 1 5− . * ’ seems like a hor-
ribly non-intuitive way of defining the whiskers to you, perhaps it’s best to avoid box-
plots. And, if you do decide to use a boxplot, don’t hesitate to re-state the definition of
the whiskers in the figure captions—it’s good to give people reminders.6 Describing
the meaning of the individual plot components in the figure captions should be done
anyway. For example, sometimes researchers use the range of the data (minimum and
maximum) for the whiskers of a boxplot, which you would need to know in order to
interpret the plot correctly. In general, when writing up statistical results, it’s good if
you describe each plot in as much detail as possible.

3.7. � Summary Statistics in R
Let’s put our understanding of distributions and summary statistics into practice. First,
create 50 uniformly distributed numbers with the runif() function. The name of
this function stands for ‘random uniform’. Since this is a random number generation
function, your numbers will be different from the ones shown in this book.

Generate 50 random uniformly distributed numbers:

x <- runif(50)

Check:

x

 [1] 0.77436849 0.19722419 0.97801384 0.20132735
 [5] 0.36124443 0.74261194 0.97872844 0.49811371
 [9] 0.01331584 0.25994613 0.77589308 0.01637905
[13] 0.09574478 0.14216354 0.21112624 0.81125644
[17] 0.03654720 0.89163741 0.48323641 0.46666453

5	 Data should never be excluded unless there are justifiable reasons for doing so.
6	 I suspect that many people in the language sciences may not be able to state the definition of the

whiskers off the top of their heads. If you want to make new friends at an academic poster session,
next time you spot a boxplot, ask the poster presenter to define the whiskers.

15034-2313q-3pass-r02.indd 60 10/3/2019 5:50:51 PM

Descriptive Statistics  61

[21] 0.98422408 0.60134555 0.03834435 0.14149569
[25] 0.80638553 0.26668568 0.04270205 0.61217452
[29] 0.55334840 0.85350077 0.46977854 0.39761656
[33] 0.80463673 0.50889739 0.63491535 0.49425172
[37] 0.28013090 0.90871035 0.78411616 0.55899702
[41] 0.24443749 0.53097066 0.11839594 0.98338343
[45] 0.89775284 0.73857376 0.37731070 0.60616883
[49] 0.51219426 0.98924666

Notice that by default, the runif() function generates continuous random num-
bers within the interval 0 to 1. You can override this by specifying the optional argu-
ments min and max.

x <- runif(50, min = 2, max = 6)

head(x)

[1] 2.276534 2.338483 2.519782 4.984528 2.155517
[6] 4.742542

Plot a histogram of these numbers using the hist() function. A possible result is
shown in Figure 3.5 (left plot). Remember that your plot will be different, and that is OK.

hist(x, col = 'steelblue')

Next, generate some random normally distributed data using the rnorm() func-
tion and draw a histogram of it.

Figure 3.5. � Left: random data drawn from aa uniform distribution; right: random data
drawn from a normal distribution; the dashed line indicates the mean

15034-2313q-3pass-r02.indd 61 10/3/2019 5:50:52 PM

62  Descriptive Statistics

x <- rnorm(50)

hist(x, col = 'steelblue')

abline(v = mean(x), lty = 2, lwd = 2)

This code also plots a vertical line at the mean. The line type is indicated to be
dashed (lty = 2), and the line width is indicated to be 2 (lwd = 2). Figure 3.5
(right plot) is an example distribution.

The rnorm() function generates data with a mean of 0 by default. It also has
a default for the standard deviation, which is 1 . You can override these defaults by
specifying the optional arguments mean and sd.

x <- rnorm(50, mean = 5, sd = 2)

Check whether this has worked by computing the mean and the standard deviation
using the corresponding mean() and sd() functions (remember: your values will
be different).

mean(x)

[1] 4.853214

sd(x)

[1] 2.262328

Notice that these values are close to what was specified in the rnorm() command
(mean = 5, sd = 2).

The quantile() function is useful for computing percentiles. If you run
quantile() on the vector of random numbers without supplying any additional
arguments, you retrieve the minimum (0th percentile) and the maximum (100th per-
centile), as well as Q1 (the first ‘quartile’, the 25th percentile), the median (Q2, the
50th percentile) and Q3 (the 75th percentile).

quantile(x)

 0% 25% 50% 75% 100%
-1.297574 3.100322 4.633111 6.363569 10.157849

You can use the quantile() function to assess the 68%-95% rule. The 68%
interval corresponds to the 16th and 84th percentiles.

quantile(x, 0.16)

 16%
2.749623

15034-2313q-3pass-r02.indd 62 10/3/2019 5:50:53 PM

Descriptive Statistics  63

quantile(x, 0.84)

 84%
7.080644

If the 68% rule of thumb works, the resulting numbers should be fairly close to the
interval covered by M − SD and M + SD.

mean(x) - sd(x)

[1] 2.590886

mean(x) + sd(x)

[1] 7.115541

And, indeed, the numbers are fairly similar to the percentiles. Let’s do the same for the
95% interval, which corresponds to the interval between the 2.5th and the 97.5th percen-
tiles. For this small example dataset, the 95% rule is a little off.

2.5th percentile:

quantile(x, 0.025)

 2.5%
1.004807

Should correspond to M – 2 * SD:

mean(x) - 2 * sd(x)

[1] 0.3285584

97.5th percentile:

quantile(x, 0.975)

 97.5%
8.758132

Should correspond to M + 2 * SD:

mean(x) + 2 * sd(x)

[1] 9.377869

I highly recommend using random number generation functions to develop an intui-
tion for how approximate Gaussian data looks like. In some circumstances, a histogram

15034-2313q-3pass-r02.indd 63 10/3/2019 5:50:53 PM

64  Descriptive Statistics

may look quite non-Gaussian even though an underlying Gaussian distribution was used
to generate the data. To get a ‘feel’ for drawing random samples from the normal distribu-
tion, execute the following command repeatedly.

hist(rnorm(n = 20)) # execute repeatedly

You will notice that with only 20 data points it is often quite difficult to see that
the data was drawn from an underlying normal distribution. If you change n to a very
large number, the histograms should be much more Gaussian in shape. The take-home
message here is that it is often difficult to tell what the appropriate reference distribu-
tion is for very small sample sizes.

3.8. � Exploring the Emotional Valence Ratings
In this section, you will analyze the above-mentioned emotional valence ratings from
Warriner et al. (2013). Let’s load the tidyverse package and the data into your
current R session (you will have to make sure that your working directory is set appro-
priately; see Chapter 1).

Load packages and data:

library(tidyverse)

war <- read_csv(' warriner_2013_emotional_valence.csv')

As was emphasized again and again in Chapters 1 and 2, whenever you load data
into R, you should spend considerable time familiarizing yourself with its structure.7

war

A tibble: 13,915 x 2
 Word Val
 <chr> <dbl>
 1 aardvark 6.26
 2 abalone 5.3
 3 abandon 2.84
 4 abandonment 2.63
 5 abbey 5.85
 6 abdomen 5.43
 7 abdominal 4.48
 8 abduct 2.42
 9 abduction 2.05
10 abide 5.52
... with 13,905 more rows

7	 It’s worth remembering the principle ‘garbage in, garbage out’: if there’s some issue with the data
that you are unaware of, any stats computed may be worthless.

15034-2313q-3pass-r02.indd 64 10/3/2019 5:50:53 PM

Descriptive Statistics  65

The tibble has two columns, pairing a Word with an emotional valence rating, Val.
Compute the range to get a feel for this measure:

range(war$Val)

[1] 1.26 8.53

The emotional valence scores range from 1.26 to 8.53. To find the corresponding
words, use filter(). Remember that this function filters rows based on a logical
condition (see Chapter 2).

filter(war, Val == min(Val) | Val == max(Val))

A tibble: 2 x 2
 Word Val
 <chr> <dbl>
1 pedophile 1.26
2 vacation 8.53

The above command uses the logical function ‘or’ (represented by the vertical bar
‘|’) to retrieve all the rows that satisfy either of the two logical statements. This com-
mand can be translated into the following English sentence: ‘Filter those rows from
the war tibble for which valence is equal to the minimum or the maximum (both are
OK).’ The following command achieves the same result in a more compressed fashion
(see Chapter 2.6 for an explanation of %in%).

filter(war, Val %in% range(Val))

A tibble: 2 x 2
 Word Val
 <chr> <dbl>
1 pedophile 1.26
2 vacation 8.53

Let’s have a look at the most positive and the most negative words in the dataset by
using arrange().

arrange(war, Val) # ascending order

A tibble: 13,915 x 2
 Word Val
 <chr> <dbl>
 1 pedophile 1.26
 2 rapist 1.30
 3 AIDS 1.33
 4 torture 1.40
 5 leukemia 1.47
 6 molester 1.48
 7 murder 1.48

15034-2313q-3pass-r02.indd 65 10/3/2019 5:50:53 PM

66  Descriptive Statistics
 8 racism 1.48
 9 chemo 1.50
10 homicide 1.50
... with 13,905 more rows

arrange(war, desc(Val)) # descending order

A tibble: 13,915 x 2
 Word Val
 <chr> <dbl>
 1 vacation 8.53
 2 happiness 8.48
 3 happy 8.47
 4 christmas 8.37
 5 enjoyment 8.37
 6 fun 8.37
 7 fantastic 8.36
 8 lovable 8.26
 9 free 8.25
10 hug 8.23
... with 13,905 more rows

Thanks to surveying lots of different data points, you now have a firm grasp of the
nature of this data. Let’s compute the mean and standard deviation.

mean(war$Val)

[1] 5.063847

sd(war$Val)

[1] 1.274892

The mean is 5.06; the standard deviation is 1.27. You expect 68% of the data to fol-
low into the following interval:

mean(war$Val) - sd(war$Val)

[1] 3.788955

mean(war$Val) + sd(war$Val)

[1] 6.338738

Verify whether this is actually the case using the quantile() function. The fact
that the resulting numbers are close to M − SD and M + SD shows that the rule was
pretty accurate in this case.

quantile(war$Val, c(0.16, 0.84))

15034-2313q-3pass-r02.indd 66 10/3/2019 5:50:53 PM

Descriptive Statistics  67

 16% 84%
3.67 6.32

Finally, let’s have a look at the median, which is very similar to the mean in this
case.

median(war$Val)

[1] 5.2

quantile(war$Val, 0.5)

50%
5.2

3.9. � Chapter Conclusions
Everything in statistics is grounded in the notion of a distribution, and in (paramet-
ric) statistical modeling our goal is to make models of distributions. The mean is a
great summary of a distribution, especially if the distribution approximates normal-
ity. In the applied R exercise, you then generated some random data and computed
summary statistics. Being able to generate random data is a very important skill that
will be nurtured throughout this book, alongside working with real data. Finally,
you computed summary statistics for the Warriner et al. (2013) emotional valence
ratings.

Everything up to this point has dealt with ‘univariate’ distributions. That is, you
always only considered one set of numbers at a time. The next chapter will progress to
bivariate data structures, focusing on the relationship between two sets of data.

3.10. � Exercises

3.10.1. � Exercise 1: Plotting a Histogram of the Emotional
Valence Ratings

With the Warriner et al. (2013) data, create a ggplot2 histogram and plot the mean
as a vertical line into the plot using geom_vline() and the xintercept aesthetic
(see Chapter 2). Can you additionally add vertical dashed lines to indicate where 68%
and 95% of the data lie? (Ignore any warning messages about binwidth that may arise).

3.10.2. � Exercise 2: Plotting Density Graphs

In the plot you created in the last exercise, exchange geom_histogram() with
geom_density(), which produces a kernel density graph. This is a plot that won’t
be covered in this book, but by looking at it you may be able to figure out that it is
essentially a smoothed version of a histogram. There are many other geoms to explore.
Check out the vast ecosystem of online tutorials for different types of ggplot2
functions.

15034-2313q-3pass-r02.indd 67 10/3/2019 5:50:53 PM

68  Descriptive Statistics

Additional exercise: set the fill argument of geom_density() to a different
color (such as ‘peachpuff’). This is not an aesthetic mapping, because it doesn’t draw
from the data.

3.10.3. � Exercise 3: Using the 68%-95% to Interpret
Research Papers

Imagine reading a research paper about a grammaticality rating study. It is noted that
the mean acceptability rating for a particular grammatical construction is 5.25 with a
standard deviation of 0.4. Assuming normality, what is the interval within which you
expect 68% of the data to lie? What about 95% of the data? Do you think the assump-
tion of approximate normality is reasonable in this case?

15034-2313q-3pass-r02.indd 68 10/3/2019 5:50:53 PM

4	� Introduction to the Linear
Model
Simple Linear Regression

4.1. � Word Frequency Effects
The last chapter focused on modeling distributions with means. This chapter teaches
you how to condition a mean on another variable. That is, you will create models that
predict conditional means—means that shift around depending on what value some
other piece of data assumes. In modeling such conditional means, you move from
the topic of univariate statistics (describing single variables) to bivariate statistics
(describing the relationship between two variables). The approach you learn in this
chapter is the foundation for everything else in the book.

Hundreds of studies have found that frequent words are comprehended faster than
infrequent words (e.g., Postman & Conger, 1954; Solomon & Postman, 1952; Jesche-
niak & Levelt, 1994). Figure 4.1 is an example of this, displaying response dura-
tions from a psycholinguistic study conducted as part of the English Lexicon Project
(Balota et al., 2007). The y-axis extends from 400ms (two fifths of a second) to 1000ms
(one second).1 Longer response durations (up on the graph) mean that participants
responded more slowly; shorter response durations (down on the graph) mean they
responded faster. The word frequencies on the x-axis are taken from the SUBTLEX
corpus (Brysbaert & New, 2009). They are represented on a logarithmic scale (log10).
Logarithms will be explained in more detail in Chapter 5. From now on I will simply
talk of ‘word frequency’ instead of ‘log frequency’, as for understanding the basics of
regression models the logarithmic nature of the scale is not relevant.

The relationship between response duration and frequency is neatly summarized by
a line. This line is the regression line, which represents the average response duration
for different frequency values. Simple linear regression is an approach that models a
single continuous response variable as a function of a predictor variable. Table 4.1
shows some common terminological differences that come up in regression mode-
ling. Some researchers and textbooks use the language of ‘regressing y on x’. I prefer
to speak of ‘modeling y as a function of x’. Researchers often use the terms ‘inde-
pendent variable’ and ‘dependent variable’ (the dependent variable y depends on the

1	 In what is called a ‘lexical decision task’, participants were asked whether a word was English or
not. For example, horgous is not an English word, but kitten is. In Figure 4.1, each point is averaged
over multiple participants’ responses.

15034-2313q-3pass-r02.indd 69 10/3/2019 5:50:53 PM

70  Introduction to the Linear Model

independent variable x). I prefer to speak of x as a ‘predictor’, as it allows forming
predictions for y, which I often call the ‘response’ or ‘outcome’ variable.

Generally, you specify regression in the direction of assumed causality (e.g.,
word frequencies affect response durations rather than the other way around).
However, it is important to remember the slogan ‘correlation is not causation’, as
the regression model cannot tell you whether there actually is a causal relationship
between x and y.2

2	 For some delightful examples of this principle in linguistics, see Roberts and Winters (2013). For
example, cultures taking siestas speak languages with reduced morphological complexity.

Figure 4.1. � Response duration as a function of word frequency; each point represents the
average response duration for a particular word; the x-axis is scaled logarith-
mically (see Chapter 5); the line represents the linear regression fit; the white
square represents the intercept (the point where x = 0)

Table 4.1.  Different names for response and predictors

y x

response/outcome predictor
dependent variable independent variable
 explanatory variable
 regressor

15034-2313q-3pass-r02.indd 70 10/3/2019 5:50:53 PM

Introduction to the Linear Model  71

4.2. � Intercepts and Slopes
Mathematically, lines are represented in terms of intercepts and slopes. Let’s talk about
slopes first, then intercepts. In the case of the frequency effect shown in Figure 4.1,
the slope of the line is negative. As the frequency values increase, response durations
decrease. On the other hand, a positive slope goes ‘up’ (as x increases, y increases as
well). Figure 4.2a shows two slopes that differ in sign. One line has a slope of +0.5,
the other one has a slope of –0.5.

The slope is defined as the change in y (Δy, ‘delta y’) over the change in x (Δx,
‘delta x’).

slope y
x

= ∆
∆

� (E4.1)

Sometimes, the slogan ‘rise over run’ is used as a mnemonic for this calcula-
tion. How much do you have to ‘rise’ in y for a specified ‘run’ along the x-axis?
In the case of the response duration data discussed in this chapter, the slope

turns out to be −70 ms
freq

. Thus, for each increase in frequency by 1 unit, the

predicted response duration decreases by 70ms. For a two-unit increase in word
frequency, the predicted response duration decreases by 140ms (= 70 2ms*) , and
so on.

However, a slope is not enough to specify a line. For any given slope, there is an
infinity of possible lines. Figure 4.2b shows two lines with the same slope but differ-
ing ‘intercepts’. You can think of the intercept informally as the point ‘where the line
starts’ on the y-axis. As the y-axis is located at x = 0, this means that the intercept is
the predicted y-value for x = 0. For the data shown in Figure 4.1, this happens to be the

Figure 4.2. � (a) Two lines with positive and negative slopes that go through the same inter-
cept; (b) two lines with the same positive slope that have different intercepts

15034-2313q-3pass-r02.indd 71 10/3/2019 5:50:58 PM

72  Introduction to the Linear Model

number 880ms (represented by the white square). Thus, for a (log) word frequency of
0, the model predicts the intercept 880ms.

Once the intercept and slope are fixed, there can be only one line. In math-speak,
the line is said to be ‘uniquely specified’ by these two numbers. The intercept and
slope are both ‘coefficients’ of the regression model. The letters b0 and b1 are com-
monly used to represent the intercept and the slope. Thus, the regression line has the
following form:

y b b x= +0 1 * � (E4.2)

This equation yields different y means for different x-values. Let’s plug in the actual
coefficients from the regression shown in Figure 4.1.

response duration ms ms
freq

word frequency� � �
�

�
�

�

�
�880 70 * � (E4.3)

Because the slope has the unit ms
freq

, multiplying it by a frequency value

returns milliseconds. That is, ms
freq

freq ms* = (the two frequency units cancel

each other out), highlighting how this regression model predicts response durations.
The coefficient estimates are the principal outcome of any regression analysis. A lot

of your time should be spent on interpreting the coefficients—for example, by plug-
ging in various values into the equation of your model to see what it predicts.

4.3. � Fitted Values and Residuals
Let’s see what response duration the regression model predicts for the word script.
This word wasn’t part of the original data, but if we know the word’s frequency, the
predictive equation E4.3 will churn out a response duration. It turns out that script has
a (log) frequency of 3 in the SUBTLEX corpus, and thus:

response duration ms ms
freq

freq ms� � �
�

�
�

�

�
� �880 70 3 670* � (E4.4)

The expected response duration for script is 670ms. Such a prediction is called a
‘fitted value’, as it results from ‘fitting’ a regression model to a dataset. In fact, all
points along the regression line are fitted values. However, not all of these values
may be equally sensible. Forming predictions based on a regression model generally
only makes sense within the range of the attested data (this is called ‘interpolation’).
Regression models may produce odd results when predicting beyond the range of the
attested data, what is called ‘extrapolating’.3 Word frequencies below zero make no

3	 See Tatem, Guerra, Atkinson, and Hay (2004) for a hilarious extrapolation error. Based on the fact
that female sprinters have increased their running speed more quickly than male sprinters over

15034-2313q-3pass-r02.indd 72 10/3/2019 5:51:03 PM

Introduction to the Linear Model  73

sense, nevertheless, the regression model happily allows us to form predictions for
negative values. For example, for the impossible x-value of –100, the model predicts
a response duration of 7880ms. The model doesn’t ‘know’ that negative frequencies
make no sense.

The frequency model doesn’t fit any of the data points perfectly. The extent to which
the model is wrong for any specific data point is quantified by the residuals, which
are the vertical distances of the observed data from the regression line, as shown in
Figure 4.3. In this scatterplot, observed values above the line have positive residuals
(+); observed values below the line have negative residuals (–). The actual numeri-
cal values represent how much the predictions would have to be adjusted upwards or
downwards to reach each observed value.

The relationship between fitted values, observed values, and residuals can be sum-
marized as follows:

observed values fitted values residuals� �= + � (E4.5)

This equation can be rewritten the following way:

residuals observed values fitted values= −� � � (E4.6)

the past few decades, these researchers claimed that, in 2156, women will run faster than men. As
pointed out by Rice (2004) and Reinboud (2004), the same regression model would also predict
instantaneous sprints in the year 2636.

Figure 4.3. � Regression line with vertical line segments indicating the residuals, which are
positive (above the line) or negative (below the line); conditional means for
x = 1 and x = 4 are projected onto the right y-axis; the density curves represent
the constant variance and normality assumptions

15034-2313q-3pass-r02.indd 73 10/3/2019 5:51:05 PM

74  Introduction to the Linear Model

Equation E4.6 shows that the residuals are what’s ‘left over’ after subtracting your
model’s predictions from the data. Zuur, Ieno, Walker, Saveliev, and Smith (2009: 20)
say that “the residuals represent the information that is left over after removing the
effect of the explanatory variables".

Now that you know about residuals, the general form of a regression equation can
be completed. All that needs to be done is to extend the predictive equation E4.2 with
an ‘error term’, which I represent with the letter ‘e’ in the equation below. In your
sample, this term corresponds to the residuals.

y b b x e= + +0 1 * � (E4.7)

Essentially, you can think of the regression equation as being composed of two
parts. One part is ‘deterministic’ and allows you to make predictions for conditional
means (a mean dependent on x). This is the ‘ b b x0 1+ * ' part of the above equation.
This part is deterministic in the sense that for any value of x that you plug in, the
equation will always yield the same result. Then, there is a ‘stochastic’ part of the
model that messes those predictions up, represented by e.

4.4. � Assumptions: Normality and Constant Variance
Statistical models, including regression, generally rely on assumptions. All claims
made on the basis of a model are contingent on satisfying its assumptions to a reason-
able degree. Assumptions will be discussed in more detail later. Here, the topic will
be introduced as it helps us to connect the topics of this chapter, regression, with the
discussion of distributions from the last chapter.

For regression, the assumptions discussed here are actually about the error term e,
that is, they relate to the residuals of the model. If the model satisfies the normality
assumption, its residuals are approximately normally distributed. If the model satisfies
the constant variance assumption (also known as ‘homoscedasticity’), the spread of
the residuals should be about equal while moving along the regression line.

A clear violation of the constant variance assumption is shown in Figure 4.4a.
In this case, the residuals are larger for larger x-values. Figure 4.4b demonstrates a
clear violation of the normality assumption. In this case, a histogram of the residu-
als reveals ‘positive skew’, i.e., there are a few infrequent extreme values (see
Chapter 5 for a discussion of skew). It is important to emphasize that the normality
assumption is not about the response but about the residuals. It is possible that a
model of a skewed response measure has normally distributed residuals (see Chap-
ter 12). A more in-depth assessment of assumptions is found in the multiple regres-
sion chapter (Chapter 6).

4.5. � Measuring Model Fit with R2

The residuals are useful for creating a measure of the ‘goodness of fit’ of a model—how
well a model ‘fits’ the observations overall. A well-fitting model will have small residuals.

Consider an alternative model of response durations that ignores word frequency.
The word frequency slope is 0 in this case; the same response duration is predicted
regardless of word frequency (see Figure 4.5a). Notice that the residuals shown in

15034-2313q-3pass-r02.indd 74 10/3/2019 5:51:07 PM

DolanA
Highlight
curly quotes please

Introduction to the Linear Model  75

Figure 4.5a are overall larger than the residuals of the model shown in Figure 4.3a.
This suggests that the fit for this zero-slope model is worse.

To get an overall measure of ‘misfit’, the residuals can be squared and summed.4 The
corresponding measure is called ‘sum of squared errors’ (SSE). The regression model
with the slope of –70.24 has an SSE of 42,609. The zero-slope model has an SSE of
152,767, a much larger number. Imagine a whole series of possible slope values, as if you
are slowly tilting the line in Figure 4.1. Figure 4.6 shows the SSE as a function of differ-
ent slope values. This graph demonstrates that for the regression model of the response
duration data, the estimated slope (b1 = −70.28) results in the smallest residuals. Regres-
sion is sometimes called ‘least squares regression’ because it yields the coefficients that
minimize the squared residuals. As the researcher, you only have to supply the equation
responseduration b b frequency= +0 1 * . In that case, you can think of b0 and b1 as ‘place-
holders’ that are to be filled with actual numerical values based on the data.

Let’s talk a bit more about the zero-slope model (Figure 4.5a). You can fit such a
model by dropping the frequency predictor from your equation, which is the same as
assuming that the slope is 0.

response duration b= 0 � (E4.8)

4	 Why squaring? One reason is that this way you get rid of the negative signs. Otherwise the positive
and negative residuals would cancel each other out.

Figure 4.4.  Clear violations of (a) constant variance and (b) normality

15034-2313q-3pass-r02.indd 75 10/3/2019 5:51:09 PM

76  Introduction to the Linear Model

This ‘intercept-only model’ model has not been instructed to look for an effect of
frequency. What is the best estimate for the intercept in this case? In the absence of
any other information, the best estimate is the mean, as it is the value that is closest to
all data points (see Chapter 3).

The intercept-only model can be a useful a reference model or ‘null model’ for
comparing SSE values. Remember that the main regression model (with frequency
predictor) had an SSE of 42,609. Without context, this number is pretty meaningless;
it is an unstandardized statistic that changes depending on the metric of the response.
For example, if you measured response durations in seconds, rather than milliseconds,
the SSE of our main model would shrink from 42,609 to 0.042609. The ‘null model’
without a slope can be used to put the SSE of the main model into perspective. It can
be used to compute a ‘standardized’ measure of model fit, namely, R2 (‘R squared’).
The formula for R2 is as follows:

R SSE
SSE

model

null

2 1= − � (E4.9)

Figure 4.5. � (a) A regression model predicting the same response duration regardless of
frequency—vertical distances (residuals) are larger than in Figure 4.3a; (b)
squared residual error for a whole range of slope estimates—the residuals are
minimized for a slope of –70.28

Figure 4.6.  Larger residuals yield smaller R2 values

15034-2313q-3pass-r02.indd 76 10/3/2019 5:51:12 PM

Introduction to the Linear Model  77

The SSE achieves this standardization by dividing the main model’s SSE by the
corresponding null model’s SSE. Division gets rid of the metric. Let’s test this with
the SSEs for both of the models just considered. The SSE of the main model (42,609)
divided by the SSE of the null model (152,767) yields 0.28. The R2 value then is
1 − 0.28 = 0.72.

This number can be conceptualized as how much variance is ‘described’ by a mod-
el.5 In this case, 72% of the variation in response durations can be accounted for by
incorporating word frequency into the model. Conversely, 32% of the variation in
response durations is due to chance, or due to factors the model omits. In actual lin-
guistic data, R2 values as high as 0.72 are almost unheard of. Language is complex and
humans are messy, so our models rarely account for that much variance.

R2 is actually a measure of ‘effect size’. Specifically, R2 measures the strength of the
relationship between two variables (see Nakagawa & Cuthill, 2007). R2 values range
from 0 to 1. Values closer to one indicate better model fits as well as stronger effects,
as shown in Figure 4.6.

Standardized metrics of effect size such as R2 should always be supplemented by a thor-
ough interpretation of the unstandardized coefficients. You have already done this when
computing response durations for different frequency values. When looking at what your
model predicts, it is important to use your domain knowledge. As the expert of the phe-
nomenon that you study, you are the ultimate judge about what is a strong or a weak effect.

4.6. � A Simple Linear Model in R
As always, you need to load the tidyverse package if you haven’t done so already:

library(tidyverse)

Let’s start by generating some random data for a regression analysis, specifically, 50
random normally distributed numbers (see Chapter 3).

Generate 50 random numbers:

x <- rnorm(50)

Check the resulting vector (remember that you will have different numbers).

Check first 6 values:

head(x)

[1] 1.3709584 -0.5646982 0.3631284 0.6328626
[5] 0.4042683 -0.1061245

5	 People often say that R2 measures the ‘variance explained’. An informative blog post by Jan Van-
hove (accessed October 16, 2018) recommends against this terminology, among other reasons
because it sounds too causal: https://janhove.github.io/analysis/2016/04/22/r-squared

15034-2313q-3pass-r02.indd 77 10/3/2019 5:51:12 PM

78  Introduction to the Linear Model

To be able to do anything bivariate, you need y-values to go with the x-values. Let’s
say that the intercept is 10 and the slope is 3:

Create y's with intercept = 10 and slope = 3:

y <- 10 + 3 * x

Plotting y against x in a scatterplot (using the optional argument pch = 19 to
change the point characters to filled circles) reveals a straight line with no scatter (Fig-
ure 4.7, left plot). In other words, y is a perfect function of x —something that would
never happen in linguistic data.

plot(x, y, pch = 19)

To add noise, the rnorm() function is used a second time to generate residuals.

error <- rnorm(50)
y <- 10 + 3 * x + error

I want you to notice the similarity between this command and the regression equa-
tion (y b b x e= + +0 1 *) . The error term is what’s going to create residuals in the
following regression analysis. Next, rerun the plotting command, which yields the
plot to the right of Figure 4.7.

plot(x., y, pch = 19)

Figure 4.7. � Randomly generated data where y is a perfect function of x (left plot); adding
noise to y yields the plot on the right

15034-2313q-3pass-r02.indd 78 10/3/2019 5:51:13 PM

Introduction to the Linear Model  79

The data is in place. Specifically, you generated random data where y depends on x.
Since you generated the data yourself, you know that the intercept is 10 and the slope
is 3. Let’s see whether regression is able to retrieve these coefficients from the data.

For this, use the lm() function, which stands for linear model. The syntax used in
‘y ~ x’ is called ‘formula notation’, and it can be paraphrased as ‘y as a function of
x’. Usually, you want to save linear models in R objects so that you can access them
for later use.

xmdl <- lm(y ~ x)

xmdl

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x
 	 10.094 2.808

R spits out the coefficients, the main outcome of any regression analysis. Notice
how these coefficients are fairly close to what was specified when you generated the
data (you will see slightly different values). The deviations from the exact values 10
and 3 are not due to the model being wrong (regression always provides the coef-
ficients that minimize the residuals), but due to the random noise that was added to
the data.

The fitted() and residuals() functions can be used to retrieve the mod-
el’s fitted values and residuals. The following command uses the head() function
merely to reduce the output to the first six values.

head(fitted(xmdl))

 1 2 3 4 5
13.943480 8.508189 11.113510 11.870920 11.229031
 6
 9.795856

head(residuals(xmdl))

 1 2 3 4
0.49132013 -0.98612217 1.55160234 0.67056756
 5 6
0.07353501 0.16232124

The first element of the output of fitted(xmdl) is the prediction for the first data
point, and so on. Similarly, the first element of the output of residuals(xmdl) is
the deviation of the model’s prediction for the first data point, and so on.

A very useful function to apply to linear model objects is summary().

15034-2313q-3pass-r02.indd 79 10/3/2019 5:51:13 PM

80  Introduction to the Linear Model

summary(xmdl)

Call:
lm(formula = y ~ x)

Residuals:
 Min 1Q Median 3Q Max
-2.6994 -0.6110 0.1832 0.6013 1.5516

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.0939 0.1284 78.61 <2e-16 ***
x 2.8080 0.1126 24.94 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9075 on 48 degrees of freedom
Multiple R-squared: 0.9284,    Adjusted R-squared: 0.9269
F-statistic: 622 on 1 and 48 DF, p-value: < 2.2e-16

This function spits out what’s called a coefficient table (under the header
‘Coefficients’. It also includes useful summary statistics for the overall model
fit. In this case, the R2 value is 0.9284, indicating that the model describes about 93%
of the variance in y. Chapter 6 will discuss ‘Adjusted R-squared’. The other
values (p-value, standard error, etc.) will be discussed in the chapters on inferential
statistics (Chapters 9–11).

The coef() function retrieves the coefficients of a linear model. The output of this
is a vector of coefficients.

coef(xmdl)

(Intercept) x
 10.093852 2.807983

This vector can be indexed as usual. The following commands retrieve the intercept
and slope, respectively.

coef(xmdl)[1]

(Intercept)
 10.09385

coef(xmdl)[2]

 x
2.807983

15034-2313q-3pass-r02.indd 80 10/3/2019 5:51:13 PM

Introduction to the Linear Model  81

Alternative way of indexing (by name):

coef(xmdl)['(Intercept)']

(Intercept)
 10.09385

coef(xmdl)['x']

 x
2.807983

The following command computes the fitted value for an x-value of 10:

coef(xmdl)['(Intercept)'] + coef(xmdl)['x'] * 10

(Intercept)
 38.17369

Don’t be confused by the fact that it says ‘(Intercept)’ at the top of the pre-
dicted value. This is just because when R performs a mathematical operation on two
named vectors (one being named ‘(Intercept)’, the other one being named ‘x’),
it maintains the name of the first vector.

The predict() function is useful for generating predictions for fitted models,
thus saving you some arithmetic. The function takes two inputs: first, a model which
forms the basis for generating predictions; second, a set of new values to generate
predictions for.

Let’s generate predictions for a sequence of numbers from –3 to +3 using the seq()
function. This particular sequence is specified to increase in 0.1 intervals (by = 0.1).

xvals <- seq(from = -3, to = 3, by = 0.1)

The predict() function needs a data frame or tibble as input. Importantly, the
column has to be named ‘x’, because this is the name of the predictor in xmdl.

mypreds <- tibble(x = xvals)

Now that you have a tibble to generate predictions for, you can use predict(). The
following code stores the output of the mypreds tibble in a new column, called fit.

mypreds$fit <- predict(xmdl, newdata = mypreds)

mypreds

A tibble: 50 x 2
 x fit

15034-2313q-3pass-r02.indd 81 10/3/2019 5:51:13 PM

82  Introduction to the Linear Model
 <dbl> <dbl>
 1 -2.66 2.63
 2 -2.56 2.92
 3 -2.46 3.20
 4 -2.36 3.48
 5 -2.26 3.76
 6 -2.16 4.04
 7 -2.06 4.32
 8 -1.96 4.60
 9 -1.86 4.88
10 -1.76 5.16
... with 40 more rows

So, for an x-value of –2.66, the model predicts a y-value of 2.63, and so on.

4.7. � Linear Models with Tidyverse Functions
Let’s learn how to do a linear model analysis with tidyverse functions. First, let’s put
the data into a tibble, then, refit the model.

mydf <- tibble(x, y)

xmdl <- lm(y ~ x, data = mydf)

The broom package (Robinson, 2017) provides tidy model outputs, implemented
via the tidy() function.

library(broom)

Print tidy coefficient table to console:

tidy(xmdl)

 term estimate std.error statistic p.value
1 (Intercept) 10.093852 0.1283994 78.61294 2.218721e-52
2 x 2.807983 0.1125854 24.94091 3.960627e-29

The advantage of using tidy() is that the output has the structure of a data frame,
which means that you can easily index the relevant columns, such as the coefficient
estimates.

Extract estimate column from coefficient table:

tidy(xmdl)$estimate

[1] 10.093852 2.807983

15034-2313q-3pass-r02.indd 82 10/3/2019 5:51:13 PM

Introduction to the Linear Model  83

The corresponding glance() function from the broom package gives you a
‘glance’ of the overall model performance (so far you only know R2—some of the
other quantities will be explained in later chapters).

Check overall model performance:

glance(xmdl)

r.squared adj.r.squared sigma   statistic p.value
1 0.9283634 0.926871 0.9074764 622.0489 3.960627e-29
df logLik AIC BIC deviance df.residual
1 2 -65.07199 136.144 141.88 39.52864 48

To plot the model with ggplot2, you can use geom_smooth(). This ‘smoother’
plots a linear model when specifying the argument method = 'lm'. The
geom_point() function and the geom_smooth() function of the following code
snippet know what columns to draw the x- and y-values from because the aesthetic map-
pings have already been specified in the ggplot() command. These two geoms thus
share the same set of aesthetic mappings.

mydf %>% ggplot(aes(x = x, y = y)) +
 geom_point() + geom_smooth(method = 'lm') +
 theme_minimal()

The resultant plot will look similar to Figure 4.9 (plot to the right) with a super-
imposed regression line. In addition, a gray ribbon is displayed around the regres-
sion line, which is the ‘95% confidence region’, which will be explained later
(Chapters 9–11).

4.8. � Model Formula Notation: Intercept Placeholders
It’s important to learn early on that the following two function calls yield equivalent results.

xmdl <- lm(y ~ x, data = mydf)

Same as:

xmdl <- lm(y ~ 1 + x, data = mydf)

The intercept is represented by the placeholder ‘1’.6 In R’s model formula syntax, the
intercept is always fitted by default, even if this is not explicitly specified. In other words,

6	 It is no coincidence that the placeholder is the number one. However, since we don’t focus on the
mathematical details here, it is beyond the scope of this book to explain why. (Just to pique your
interest: this has to do with the matrix algebra machinery that is underlying linear models.)

15034-2313q-3pass-r02.indd 83 10/3/2019 5:51:13 PM

84  Introduction to the Linear Model

the shorthand notation ‘y ~ x’ actually fits the model corresponding to the formula
‘y ~ 1 + x’. The second function call is more explicit: it can be paraphrased as ‘esti-
mate not only a slope for x, but also an intercept’.

This knowledge can be used to specify an intercept-only model (as was discussed
above, see equation E4.8). Let’s do this for the data at hand:

Fitting an intercept-only model:

xmdl_null <- lm(y ~ 1, data = mydf)

What does this model predict?

coef(xmdl_null)

(Intercept)
 9.993686

The model predicts only one number, the intercept. No matter what value x assumes,
the model predicts the same number, the mean. Let’s verify that the coefficient of this
null model is actually the mean of the response:

mean(y)

[1] 9.993686

Thus, we have used the intercept notation to fit a linear model that estimates the
mean. For now, this will seem rather dull. (Why would you want to do this?) For the
later parts of this book, it’s important to remember the intercept is implemented by a
‘1’ placeholder.

4.9. � Chapter Conclusions
In this chapter, you performed your first regression analysis, regressing response dura-
tion on word frequency. The regression line represents a model of the data, specifically
a conditional mean. This line is fully specified in terms of an intercept and a slope. The
coefficients are the principal outcome of any regression analysis, and they allow mak-
ing predictions, which are called fitted values. The extent by which the observed data
points deviate from the fitted values are called residuals. The residuals are assumed
to be normally distributed and homoscedastic (constant variance). For a given model
specification, regression minimizes the size of the residuals. A comparison of a mod-
el’s residuals against a null model’s residuals yields a standardized measure of model
fit called R2. Throughout all of this, I emphasized that most of your time should be
spend on interpreting the regression coefficients. When doing this, you have to use
your field-specific scientific judgment. What does this slope mean with respect to your
hypothesis?

15034-2313q-3pass-r02.indd 84 10/3/2019 5:51:13 PM

Introduction to the Linear Model  85

4.10. � Exercises

4.10.1. � Exercise 1: Fit the Frequency Model

In this exercise, you will perform the analysis corresponding to Figure 4.1 above. Load
in the dataset ‘ELP_frequency.csv’. Use mutate() to apply the log10() function to
the frequency column (logarithms will be explained in Chapter 5). Fit a model in which
response durations are modeled as a function of log frequencies. Create a plot for the
relationship between these two variables.

Additional exercise: can you add a horizontal line showing the mean response dura-
tion using geom_hline() and the yintercept aesthetic?

4.10.2. � Exercise 2: Calculating R2 by Hand

Run the following lines in R (this requires that you still have the random x-values and ran-
dom y-values generated in the chapter). Try to make sense of each command. Compare the
resulting number to the R2 value reported by summary(xmdl) or glance(xmdl).

xmdl <- lm(y ~ x)
xmdl_null <- lm(y ~ 1)

res <- residuals(xmdl)
res_null <- residuals(xmdl_null)
sum(res ^ 2)
sum(res_null ^ 2)
1 - (sum(res ^ 2) / sum(res_null ^ 2))

15034-2313q-3pass-r02.indd 85 10/3/2019 5:51:13 PM

5	� Correlation, Linear, and
Nonlinear Transformations

5.1. � Centering
A linear transformation involves addition, subtraction, multiplication, or division with
a constant value. For example, if you add 1 to the numbers 2, 4, and 6, the resulting
numbers (3, 5, and 7) are a linear transformation of the original numbers. Having
added a constant value to all numbers has not changed the relations between the num-
bers, because each number is affected the same way.

Linear transformations are useful, because they allow you to represent your data in
a metric that is suitable to you and your audience. For example, consider the response
time data from Chapter 4. In this analysis, response durations were measured on a
scale of milliseconds. If you wanted to talk about seconds instead, simply divide each
response duration by 1000. This won’t affect the theoretical conclusions you base on
your regression model.

‘Centering’ is a particularly common linear transformation. This linear transfor-
mation is frequently applied to continuous predictor variables. You will learn soon,
especially in the chapter on interactions (Chapter 8), how centering facilitates the
interpretation of regression coefficients (see Schielzeth, 2010). To center a predictor
variable, subtract the mean of that predictor variable from each data point. As a result,
each data point is expressed in terms of how much it is above the mean (positive score)
or below the mean (negative score). Thus, subtracting the mean out of the variable
expresses each data point as a mean-deviation score. The value zero now has a new
meaning for this variable: it is at the ‘center’ of the variable’s distribution, namely,
the mean.1

Centering has immediate effects on the intercept. Recall that the intercept is defined
as the y-value for x = 0. Have a look at Figure 5.1a, where the intercept is the fitted
value for a log frequency of 0. Centering a distribution changes the meaning of 0. If
you center the x predictor, the intercept becomes the predicted y-value for the mean of
x, as shown in Figure 5.1b. The change from Figure 5.1a to Figure 5.1b should make it
clear why ‘centering’ is called this way, as the intercept is literally drawn to the center

1	 Side note: notice that the sample mean is itself an estimate that changes with different samples. As
a result of this, your data will be centered in a different way for different samples. It is good for you
to know that you can also center using values other than the mean. For example, you could use the
middle of a rating scale for centering rating data.

15034-2313q-3pass-r02.indd 86 10/3/2019 5:51:13 PM

Linear and Nonlinear Transformations  87

of mass of the data. Notice that the slope of the regression line does not change when
moving from Figure 5.1a to Figure 5.1b.

Two example coefficient outputs are shown below. Notice how changing the
model from an uncentered (Log10Freq) to a centered log frequency predictor
(Log10Freq_c) changes the intercept but leaves the slope intact.2

uncentered (original):
 Estimate
(Intercept) 870.91
Log10Freq -70.28

centered:
 Estimate
(Intercept) 679.92
Log10Freq_c -70.28

In some cases, uncentered intercepts outright make no sense. For example, when
performance in a sports game is modeled as a function of height, the intercept is the
predicted performance someone of 0 height. After centering, the intercept becomes
the predicted performance for a person of average height, a much more meaningful
quantity. Thus, centering your predictors affords some interpretational advantages.
When dealing with interactions (see Chapter 8), centering is absolutely essential for
avoiding mistakes in interpreting a model.

5.2. � Standardizing
A second common linear transformation is ‘standardizing’ or ‘z–scoring’. For stand-
ardizing, the centered variable is divided by the standard deviation of the sample.

2	 I use variable names that end with ‘_c’ for all my centered variables.

Figure 5.1. � Response durations as a function of uncentered and centered word frequen-
cies; intercepts are represented by white squares

15034-2313q-3pass-r02.indd 87 10/3/2019 5:51:13 PM

88  Linear and Nonlinear Transformations

For example, consider the following response durations from a psycholinguistic
experiment:

460ms 480ms 500ms 520ms 540ms

The mean of these five numbers is 500ms. Centering these numbers results in the
following:

− −40ms 20ms 0ms +20ms +40ms

The standard deviation for these numbers is ~32ms. To ‘standardize’, divide the
centered data by the standard deviation. For example, the first point, –40ms, divided
by 32ms, yields –1.3. Since each data point is divided by the same number, this change
qualifies as a linear transformation.

As a result of standardization, you get the following numbers (rounded to one digit):

� �1 3 0 6 0 0 6 1 3. . . .z z z z z� �

The raw response duration 460ms is –40ms (centered), which corresponds to being
1.3 standard deviations below the mean. Thus, standardization involves re-expressing
the data in terms of how many standard deviations they are away from the mean. The
resultant numbers are in ‘standard units’, often represented by letter z. Figure 5.2 below
shows a distribution that was already discussed in Chapter 3, the emotional valence dis-
tribution from Warriner et al. (2013). The figure displays two additional x-axes, one for
the centered data, and one for the standardized data. This highlights how linear trans-
formations just change the units on the x-axis; they leave the shape of the data intact.

Figure 5.2. � Frequency histogram for emotional valence scores with the raw emotional
valence scores, the centered emotional valence scores, and the standardized scale

15034-2313q-3pass-r02.indd 88 10/3/2019 5:51:16 PM

Linear and Nonlinear Transformations  89

Let us have a look at the output of the response duration model when the log fre-
quency predictor is standardized (Log10Freq_z).

 Estimate
(Intercept) 679.92
Log10Freq_z -101.19

The slope has changed from –70 (unstandardized) to –101 (standardized). This
change is deceiving, however, as the underlying model hasn’t changed at all, only
in which units the slope is represented. The new slope indicates how much response
durations change for 1 standard deviation of the log frequency variable, rather than 1
log frequency value.

So what’s standardizing good for? Standardizing is a way of getting rid of a vari-
able’s metric. In a situation with multiple variables, each variable may have a different
standard deviation, but by dividing each variable by the respective standard deviation,
it is possible to convert all variables into a scale of standard units. This sometimes may
help in making variables comparable, for example, when assessing the relative impact
of multiple predictors (see Chapter 6).

5.3. � Correlation
So far, this chapter has only discussed cases in which the predictor is standardized.
What if you standardized the response variable as well? In that case, neither the x-values
nor the y-values preserve their original metric; both are standardized. Thus, the corre-
sponding regression model will estimate how much change in y standard units results
from a corresponding change in x standard units. The resulting slope actually has a
special name, it is Pearson’s r, the ‘correlation coefficient’.

Pearson’s r is a standardized metric of how much two variables are correlated with
each other. If y increases as x increases, then the correlation coefficient is positive
(e.g., age and vocabulary size). If y decreases as x increases, then the correlation coef-
ficient is negative (e.g., frequency and response duration). Correlation coefficients
range between –1 and +1. The farther away the coefficient is from zero, the stronger
the correlation. Figure 5.3 shows a range of randomly generated datasets with their
corresponding correlation coefficients. Compare the scatterplots to the r-values to
gauge your intuition about Pearson’s r.

Pearson’s r being a standardized measure of correlation means that you do not need
to know the underlying metric of the data in order to understand whether two variables
are strongly correlated or not. Imagine listening to a talk from a completely different
field—say, quantum chemistry—and somebody reports that two quantities have a cor-
relation of r = 0.8. Then, without knowing anything about quantum chemistry, you
can draw a mental picture of what the correlation looks like, in line with the examples
seen in Figure 5.3. That said, whether r = 0.8 is considered to be a ‘high’ or ‘low’ cor-
relation still depends on domain knowledge. For a psychologist or a linguist, this is a
really high correlation (our study systems are usually never this well-behaved), for a
quantum chemist an r of 0.8 may be low.

You have already seen another standardized statistic in this book, namely, R2, the
‘coefficient of determination’ (see Chapter 4). Recall that this number measures the

15034-2313q-3pass-r02.indd 89 10/3/2019 5:51:16 PM

90  Linear and Nonlinear Transformations

Figure 5.3.  Example scatterplots with their corresponding correlation coefficients

‘variance described’ by a model. When a correlation is very strong, this also means
that a lot of variance is described. For simple linear regression models with only one
predictor, R2 is actually the squared correlation coefficient.

5.4. � Using Logarithms to Describe Magnitudes
Nonlinear transformations have much less innocuous effects on the data than linear
transformations; they do affect the relations between data points. Figure 5.4a shows a
distribution of response durations from a psycholinguistic study conducted by Winter
and Bergen (2012) (pooled across experiments 1 and 2). Whereas the normal distribu-
tion is symmetrical, this distribution is not. The distribution exhibits what is called ‘posi-
tive skew’. The term ‘skew’ describes whether a distribution has extreme values in the
direction of positive infinity or negative infinity. For the distribution in Figure 5.4a, the
skew is ‘positive’ rather than ‘negative’, because there are some very large extreme val-
ues. The bulk of data actually lies towards smaller values (shorter response durations).

Positive skew is ubiquitous in linguistic data. For example, reaction time data will
almost always be skewed, because there is a natural lower limit to how quickly some-
body can respond. This limit is determined by how quickly the brain can recognize a
stimulus and initiate a motor response, as well as by how quickly it is physically possible
to move one’s hand to press a button. As a result of these factors, very short response
durations are impossible. However, very long durations are possible and they occasion-
ally occur. Many distributions that have a natural lower bound exhibit positive skew.3

You may want to subject the response durations seen in Figure 5.4a to a nonlin-
ear transformation before computing means or conducting a regression analysis.

3	 Besides having a lower bound, there are other, more theoretically interesting reasons for positive
skew in linguistic and nonlinguistic data (see Kello, Anderson, Holden, & Van Orden, 2008; Kello,
Brown, Ferrer-i-Cancho, Holden, Linkenkaer-Hansen, Rhodes, & Van Orden, 2010).

15034-2313q-3pass-r02.indd 90 10/3/2019 5:51:16 PM

Linear and Nonlinear Transformations  91

Figure 5.4. � The same set of reaction times from Winter and Bergen (2012) presented (a) in
raw milliseconds and (b) on a logarithmic scale; the dotted lines indicate means

Chapter 4 talked about the normality and constant variance assumption of regression.
If the response variable is very skewed, it is often the case that the residuals of the
corresponding models violate one of these assumptions. Thus, performing a nonlinear
transformation that gets rid of the skew may make your regression model adhere more
strongly to these assumptions. In addition, it is possible that very large values have an
undue amount of influence on your regression models (see Baayen, 2008: 92), since
they can draw the coefficient estimates away from the bulk of the data.4

Probably the most commonly applied nonlinear transformation is the logarithm.
The logarithm is best discussed together with exponentiation (taking something to
the power of another number). The logarithm takes large numbers and shrinks them.
The exponential function takes small numbers and grows them. The logarithm and the
exponential function are each other’s ‘inverses’, which is a mathematical term for two
functions that reverse each other’s effects.

Have a look at the following progression of logarithmically transformed values,
which are displayed next to the corresponding exponentiations.

Logarithms       Exponentiation

log

log

log

10
0

10
1

10

1 0 10 1

10 1 10 10

100

� � � �

� � � �

� � � 22 10 100

1000 3 10 1000

10000 4 10

2

10
3

10
4

log

log

�

� � � �

� � � ��10000

4	 You may find that response durations are often not quite Gaussian even after log-transformation.
There are other distributions that can be used in more advanced modeling applications that may
provide a better fit to positively skewed data, such as the gamma distribution (see Baayen & Milin,
2010).

15034-2313q-3pass-r02.indd 91 10/3/2019 5:51:17 PM

92  Linear and Nonlinear Transformations

This progression shows that the log10 function tracks the order of magnitude of a
number. In other words, for these numbers, the log10 counts how many zeros there
are. This corresponds to the power value used in exponentiation. For example, taking
10 to the power of 2 (10 x 10) yields 100. Taking the log10 function of 100 extracts
the power term, which yields 2 (the number of zeros).

The logarithms in this example move in a linear progression (step-size of one)
through the sequence 0–1–2–3– 4. On the other hand, the raw numbers progress in
much bigger jumps, and the bigger the logarithms, the bigger the jumps between con-
secutive logarithms.

This also means that large numbers, such as 1000, shrink disproportionately
more than small numbers when subjected to a log-transform. The log10 of 10 is 1,
which is a difference of 9 between the logarithm and the raw number. The log10
of 1000 is 3, which is a difference of 998. Logarithms thus have a ‘compressing’
effect on the data, which also means that they change the shape of the distribution,
as seen in Figure 5.4b. Because the log-transform affects some numbers more than
others, it is not a linear transformation.

The following commands show how to perform the log10 function in R.

log10(100)

[1] 2

log10(1000)

[1] 3

To get raw scores back from data that has been log10-transformed, you simply need
to exponentiate 10 by the corresponding logarithm (taking 10 to the power of 2). This
‘back-transforms’ the logarithms to the original (uncompressed) scale.

10 ^ 2

[1] 100

10 ^ 3

[1] 1000

In R, the default log function is log(). This is the ‘natural logarithm’, which
is the logarithm to the base e, the special number 2 718282. . This number is the
default log because e is useful for a number of calculus applications, and this func-
tion also features prominently in many areas of statistics (see Chapter 12 and 13).
If somebody tells you that they log-transformed the data without stating the base
of the logarithm, your best bet is that they used the natural logarithm.5 One has to

5	 The base 2 logarithm (log2) is also quite common, especially in information theory and computer
science.

15034-2313q-3pass-r02.indd 92 10/3/2019 5:51:19 PM

Linear and Nonlinear Transformations  93

recognize that different logarithms have different compressing effects on the data.
In particular, the log10 function compresses the data more strongly than the log
function (natural log).

Throughout this book and in my research, I commonly use the log10 function pri-
marily because it is easier to interpret: it’s easier to multiply 10s with each other than
lots of es. For example, if somebody reports a log10 value of 6.5, then I know that the
original number was somewhere between a number that had 6 zeros (one million:
1000000) and 7 zeros (ten million: 10000000). Similar mental calculations aren’t as
easy for e.

Response durations are frequently log-transformed with the natural logarithm,
although there are no fixed standards for this (Cleveland, 1984; Osborne, 2005). To
demonstrate how to perform calculations with log response durations, let’s create a
few hypothetical response duration values.

RTs <- c(600, 650, 700, 1000, 4000)

RTs

[1] 600 650 700 1000 4000

Let’s assume that these numbers are measured in milliseconds (4000 = 4 seconds,
and so on). Next, generate a log-transformed version of this vector.

logRTs <- log(RTs)

Let’s check the results.

logRTs

[1] 6.396930 6.476972 6.551080 6.907755 8.294050

The resulting numbers are much smaller than the raw response durations, and the
largest response duration (4000ms) is now much closer to the other numbers. Cru-
cially, these numbers now represent a fundamentally different quantity, namely, mag-
nitudes of response times, rather than response times.

What if you wanted to ‘undo’ the log-transform? For this, you have to use the
inverse of the natural logarithm, which is implemented in R via the exponential func-
tion exp().6

exp(logRTs) # undo the logging

[1] 600 650 700 1000 4000

6	 For the log10 function, there is no equivalent of the exp() function. Instead, you have to use powers
of 10. If you had a log10 response duration of 3.5, the following command gives you the correspond-
ing raw number: 10 ^ 3.5

15034-2313q-3pass-r02.indd 93 10/3/2019 5:51:20 PM

94  Linear and Nonlinear Transformations

As mentioned earlier, the logarithm has many properties that are useful in regres-
sion modeling (such as the ability to make the residuals more ‘well-behaved’).
However, you have to continuously remind yourself that when working with a
logarithmically transformed variables, you are fundamentally changing the nature
of the data. On this point, it’s worth noting that many cognitive and linguistic
phenomena are scaled logarithmically. To illustrate this, do you share the intuition
that the difference between the numbers 1 and 2 seems bigger than the difference
between the numbers 5,001 and 5,002? Of course, both pairs differ by exactly the
same amount, but one difference may appear larger to you than the other, which may
result from your mental number line being logarithmically scaled (see Dehaene,
2003). Estimates of the intensity of perceptual stimuli, such as weights and dura-
tions, also follow logarithmic patterns (Stevens, 1957). Logarithmic scaling may
even have deep roots in our neural architecture (Buzsáki & Mizuseki, 2014).

In linguistics, the seminal work by Zipf (1949) has shown that a number of lin-
guistic variables, such as word length or the number of dictionary meanings, track
the logarithm of word frequency, rather than the raw frequency. Smith and Levy
(2013) discuss evidence that processing times are scaled logarithmically. Many
acoustic variables in phonetics are also scaled logarithmically or semi-logarithmi-
cally in perception, such as loudness (the decibel scale) or pitch (the bark scale).
Thus, not only do logarithms help researchers fit more appropriate regression mod-
els, they are also often theoretically motivated.

5.5. � Example: Response Durations and
Word Frequency

Now that you know about logarithms, you will be able to perform the full analy-
sis discussed in Chapter 4 yourself. After setting your working directory, load in the
‘ELP_frequency.csv’ file.

library(tidyverse)
library(broom)

ELP <- read_csv('ELP_frequency.csv')

ELP

A tibble: 12 x 3
 Word Freq RT
 <chr> <int> <dbl>
 1 thing 55522 622.
 2 life 40629 520.
 3 door 14895 507.
 4 angel 3992 637.
 5 beer 3850 587.
 6 disgrace 409 705.
 7 kitten 241 611.
 8 bloke 238 794.

15034-2313q-3pass-r02.indd 94 10/3/2019 5:51:20 PM

Linear and Nonlinear Transformations  95

 9 mocha 66 725.
10 gnome 32 810.
11 nihilism 4 764.
12 puffball 4 878.

Let’s start by creating logarithmically transformed frequency and response time
columns using mutate()

ELP <- mutate(ELP,
 Log10Freq = log10(Freq),
 LogRT = log(RT))

The new column Log10Freq contains the log10 of Freq. I am using the loga-
rithm to the base 10 here for interpretability, but one could have also used the
natural logarithm log(), which compresses the data less strongly. The third
argument of this mutate() command creates the LogRT column, which con-
tains the log-transformed response durations. Here, I use the natural logarithm,
which is most commonly used in psycholinguistics.

Let’s check the tibble:

ELP

A tibble: 12 x 5
 Word Freq RT Log10Freq LogRT
 <chr> <int> <dbl> <dbl> <dbl>
 1 thing 55522 622. 4.74 6.43
 2 life 40629 520. 4.61 6.25
 3 door 14895 507. 4.17 6.23
 4 angel 3992 637. 3.60 6.46
 5 beer 3850 587. 3.59 6.38
 6 disgrace 409 705 2.61 6.56
 7 kitten 241 611. 2.38 6.42
 8 bloke 238 794. 2.38 6.68
 9 mocha 66 725. 1.82 6.59
10 gnome 32 810. 1.51 6.70
11 nihilism 4 764. 0.602 6.64
12 puffball 4 878. 0.602 6.78

For pedagogical purposes, Chapter 4 regressed raw response times on log frequencies.
Here, log response times will be regressed on log frequencies. For this particular data-
set, it does not make much of a difference (however, taking more data from the English
Lexicon Project into account would show that the log-transformed response durations
are preferred because they align more strongly with the assumptions of regression).

To illustrate the effects of log-transforming the frequency predictor, it’s helpful to
plot the response durations against the raw frequencies first (Figure 5.5, left plot). The
following code plots the data as text with geom_text(). The regression model is

15034-2313q-3pass-r02.indd 95 10/3/2019 5:51:20 PM

96  Linear and Nonlinear Transformations

added with geom_smooth(method = 'lm') (the meaning of the gray regions
will be explained in Chapters 9, 10, and 11). Finally, the ggtitle() function adds
a title to the plot.

ELP %>% ggplot(aes(x = Freq, y = LogRT, label = Word)) +
 geom_text() +
 geom_smooth(method = 'lm') +
 ggtitle('Log RT ~ raw frequency') +
 theme_minimal()

The left-hand plot of Figure 5.5 shows a few words to be extremely frequent,
such as life and thing. Moreover, a lot of the words with lower frequencies are
scrunched together to the left side of the plot. Figure 5.5 plots the same data against
log frequency values, which is achieved by the following code:

ELP %>% �ggplot(aes(x = Log10Freq, y = LogRT,
 label = Word)) +

 geom_text() +
 geom_smooth(method = 'lm') +
 ggtitle('Log RT ~ log frequency') +
 theme_minimal()

Notice that when frequency is scaled logarithmically, there is a nice linear relation-
ship to response durations. Let’s build a model of this.

ELP_mdl <- lm(LogRT ~ Log10Freq, data = ELP)

Figure 5.5. � Left: log response durations as a function of raw word frequencies with model
fit; right: log response durations as a function of log word frequencies

15034-2313q-3pass-r02.indd 96 10/3/2019 5:51:20 PM

Linear and Nonlinear Transformations  97

Let’s have a look at the coefficients via the tidy() function from the broom package.

tidy(ELP_mdl)

 term estimate std.error statistic p.value
1 (Intercept) 6.7912813 0.06113258 111.091039 8.564422e-17
2 Log10Freq -0.1042491 0.02006108 -5.196583 4.032836e-04

Without performing any mathematical tricks, you can immediately interpret the
sign of the coefficient. Notice that the Log10Freq coefficient is a negative number,
which means that, as log frequencies increase, log response durations become shorter;
more frequent words are processed faster. While it is often useful to fit a regression
model on log-transformed data (due to assumptions, influential values, etc.), you may
still want to interpret your model in terms of raw milliseconds. Thus, you may want
to ‘back-transform’ the log predictions of your model into the corresponding millisec-
ond predictions. Let’s generate the predicted response duration for two representative
word frequencies, 10 and 1000. To make the following code less chunky, let’s first
extract the coefficients from the model equation.

b0 <- tidy(ELP_mdl)$estimate[1] # intercept

b1 <- tidy(ELP_mdl)$estimate[2] # slope

If you want to generate predictions for words with the frequencies 10 and 1000,
what log values do you need to plug into the equation? Here it becomes useful to use
base 10 for the frequency predictor. A word with a frequency of 10 corresponds to a
log10 of 1 since 101 = 10. A word with a frequency of 1000 corresponds to a log10 of 3
since 10 10 10 10 10003 = =* * . So, let’s fill out the equation for 1 and 3:

logRT_10freq <- b0 + b1 * 1

logRT_1000freq <- b0 + b1 * 3

The objects logRT_10freq and logRT_1000freq now contain the predicted
log response durations for the word frequencies 10 and 1000.

logRT_10freq

[1] 6.687032

logRT_1000freq

[1] 6.478534

15034-2313q-3pass-r02.indd 97 10/3/2019 5:51:20 PM

98  Linear and Nonlinear Transformations

For a word frequency of 10, the model predicts a log response duration of about
6.69; for a word frequency of 1000, it predicts about 6.48. To convert these numbers
back to raw response durations, you need to apply the inverse of the natural logarithm,
the exponential function exp().

exp(logRT_10freq)

[1] 801.9387

exp(logRT_1000freq)

[1] 651.0159

The model predicts that response durations are about 807ms for words with a fre-
quency of 10. A word that is two magnitudes more frequent (raw frequency = 1000) is
predicted to have a response duration of 652ms. That’s a difference of about 150ms,
which is quite a large difference for a psycholinguistic study.

5.6. � Centering and Standardization in R
This next exercise provides additional practice for centering and standardizing. In
many ways, the following linear transformations will seem rather ‘cosmetic’ to you,
and you may even wonder at this stage why they are necessary. You can think of the
following exercise as a ‘dry run’ that allows you to rehearse centering and standard-
izing data in a safe space. The importance of these linear transformations will be felt
more strongly in later chapters.

The following command uses mutate() to compute all linear transformations in
one step. The mean is subtracted to generate the centered variable Log10Freq_c. This
centered variable is then divided by the standard deviation.

ELP <- mutate(ELP,
 Log10Freq_c = Log10Freq - mean(Log10Freq),
 Log10Freq_z = Log10Freq_c / sd(Log10Freq_c))

Let’s have a look at the different frequency columns next to each other:

select(ELP, Freq, Log10Freq, Log10Freq_c, Log10Freq_z)

A tibble: 12 x 4
 Freq Log10Freq Log10Freq_c Log10Freq_z
 <int> <dbl> <dbl> <dbl>
 1 55522 4.74 2.03 1.41
 2 40629 4.61 1.89 1.31
 3 14895 4.17 1.46 1.01
 4 3992 3.60 0.884 0.614

15034-2313q-3pass-r02.indd 98 10/3/2019 5:51:20 PM

Linear and Nonlinear Transformations  99

 5 3850 3.59 0.868 0.603
 6 409 2.61 -0.106 -0.0736
 7 241 2.38 -0.336 -0.233
 8 238 2.38 -0.341 -0.237
 9 66 1.82 -0.898 -0.624
10 32 1.51 -1.21 -0.842
11 4 0.602 -2.12 -1.47
12 4 0.602 -2.12 -1.47

R also has the built-in function scale(), which by default standardizes a vector. If
you only want to center, you can override the default by specifying scale = FALSE.
The following command repeats the linear transformations discussed above, but this
time using scale().7

Same as before, different approach:

ELP <- mutate(ELP,
 Log10Freq_c = scale(Log10Freq, scale = FALSE),
 Log10Freq_z = scale(Log10Freq))

With the data in place, you can create linear models with the centered and standard-
ized predictors:

ELP_mdl_c <- lm(LogRT ~ Log10Freq_c, ELP) # centered
ELP_mdl_z <- lm(LogRT ~ Log10Freq_z, ELP) # z-scored

Let’s compare the coefficients from the different models:

tidy(ELP_mdl) %>% select(term, estimate)

 term estimate
1 (Intercept) 6.7912813
2 Log10Freq -0.1042491

tidy(ELP_mdl_c) %>% select(term, estimate)

 term estimate
1 (Intercept) 6.5079660
2 Log10Freq_c -0.1042491

7	 Newcomers to statistical modeling seem to like the scale() function, but I recommend construct-
ing centered and standardized variables ‘by hand’. This is not only more explicit, but scale()
does a number of things behind the scenes that may sometimes cause problems.

15034-2313q-3pass-r02.indd 99 10/3/2019 5:51:20 PM

100  Linear and Nonlinear Transformations

tidy(ELP_mdl_z) %>% select(term, estimate) # slope changes

 term estimate
1 (Intercept) 6.507966
2 Log10Freq_z -0.150103

First, compare xmdl to xmdl_c. There is no change in the slope, but the intercept
is different in the centered model. In both models, the intercept is the prediction for
x = 0, but x = 0 corresponds to the average frequency in the centered model. Second,
compare xmdl_c and xmdl_z. The intercepts are the same because, for both mod-
els, the predictor has been centered. However, the slope has changed because a change
in one unit is now a change in 1 standard deviation.

To convince yourself that each one of these models is just a different representation
of the same underlying relationship, you can look at the overall model statistics with
glance()—in which case, you’ll find that everything stays the same. For example,
each of the models describes exactly the same amount of variance:

glance(ELP_mdl)$r.squared

[1] 0.7183776

glance(ELP_mdl_c)$r.squared

[1] 0.7183776

glance(ELP_mdl_z)$r.squared

[1] 0.7183776

If, however, you compare any of these models to another one that differs in a non-
linear transformation, you get a different R2 value, which indicates a different fit.

glance(lm(LogRT ~ Freq, ELP))$r.squared

[1] 0.2913641

Finally, let’s compare regression to correlation. You can calculate the correlation
coefficient using the cor() function. To teach you some more R, the following com-
mand uses the with() function, which makes the ELP tibble available to the cor()
function. That way, you don’t have to use the dollar sign to index the respective col-
umns, since the function already knows that you are operating on the ELP tibble.

with(ELP, cor(Log10Freq, LogRT))

[1] -0.8542613

The result of this command shows that Pearson’s correlation coefficient is r = −0.85,
a very strong negative correlation. The fact that the correlation is negative means that,
as frequency increases, response durations become shorter.

15034-2313q-3pass-r02.indd 100 10/3/2019 5:51:20 PM

Linear and Nonlinear Transformations  101

For pedagogical reasons, it’s useful to recreate the output of cor() using the lm()
function. For this, you simply have to run a regression model where both the response
and the predictor are z-scored. In addition, you need to prevent the regression model from
attempting to estimate an intercept. Notice that the intercept does not have to be esti-
mated, as we know it’s zero anyway (since both x and y are standardized). To tell the lin-
ear model function that you don’t want to estimate an intercept, you add ‘-1’ to the model
equation (remember from Chapter 4.8 that ‘1’ acts as a placeholder for the intercept).

ELP_cor <- lm(scale(LogRT) ~ -1 + Log10Freq_z, ELP)

tidy(ELP_cor) %>% select(estimate)

 estimate
1 -0.8542613

The slope of this linear model is exactly equal to Pearson’s r.

5.7. � Terminological Note on the Term ‘Normalizing’
A quick terminological aside: the term ‘normalizing’ is used quite frequently across
various disciplines, but, like so many statistical terms, it means different things to
different people. Some people use the term ‘normalizing’ to describe standardiza-
tion. This is perhaps confusing, because the distribution doesn’t look any more or
less ‘normal’ (Gaussian) after standardization. On the other hand, sometimes the
term ‘normalizing’ is used to refer to nonlinear transformations, since it tends to
make positively skewed data look more normal.

To make matters worse, phoneticians have yet another use for the term ‘normaliz-
ing’ that’s worth discussing here for a second. Particularly when studying speech pro-
duction, researchers sometimes ‘normalize’ speaker characteristics out of a dataset.
For example, each speaker has a different vocal tract, which affects vowel acoustics.
If you wanted vowel acoustics ‘unaffected’ by a speaker’s idiosyncratic physiology,
you could take a particular speaker’s mean and standard deviation to standardize all
of the data points from that speaker. For the next speaker, you would do the same,
using their respective mean and standard deviation. This practice ceases to be a linear
transformation, because the means and standard deviations used for standardizing are
different across speakers. So, this practice does affect the relationships between the
data points. z-scoring ‘within speaker’ has little to do with the type of linear trans-
formation that is discussed here, which merely serves to express regression slopes in
standard units.

5.8. � Chapter Conclusions
In this chapter, you were introduced to linear transformations, of which the two most
common are centering and standardizing. Being a linear transformation, centering and
standardizing have rather innocuous effects on a model, merely changing its repre-
sentation. Standardizing will become useful when dealing with models that contain
many predictors (Chapter 6), and centering will become a lifesaver when dealing with
interactions (Chapter 8).

15034-2313q-3pass-r02.indd 101 10/3/2019 5:51:20 PM

102  Linear and Nonlinear Transformations

In addition, this chapter dealt with nonlinear transformations, which change more
than just model representation. Nonlinear transformations are not cosmetic changes.
Instead, they result in fundamentally different models. This chapter focused on the
logarithm, which is commonly used in linguistics to transform response duration data
or word frequency data. The logarithm expresses a phenomenon in orders of magni-
tudes, and has a compressing effect on the data.

5.9. � Exercise

5.9.1.  �Guessing Correlation Coefficients

It’s very important to have a good intuition about Pearson’s r . Attempt to ‘guessti-
mate’ the correlation coefficients for the plots shown in Figure 5.6. It’s OK to be off
by quite a bit here—we are not doing rocket science.

Figure 5.6. � ‘Guesstimate’ the correlation coefficients (Pearson’s r) for these randomly
generated datasets

15034-2313q-3pass-r02.indd 102 10/3/2019 5:51:21 PM

6.1. � Regression with More Than One Predictor
The true power of the linear model framework comes to the fore once we move from
simple linear regression to multiple regression. That is, we move from models with
only one predictor to models with multiple predictors. This is still nothing more than
modeling a mean. However, the mean is now conditioned on multiple variables within
the same model. In doing so, the right-hand side of the regression equation is expanded
to include more than just one slope:

y b b x b x e= + + +…+0 1 2 � (E6.1)

Chapter 4 discussed the analysis of response durations as a function of log word
frequency. This analysis only dealt with a small subset of words. The present chapter
widens the scope of this analysis to incorporate more words (~33,000 words from the
English Lexicon Project; Balota et al., 2007) and more predictors.

Let’s start by running a simple linear regression of response durations as a func-
tion of log frequencies, which yields the following estimated coefficients for the full
dataset:

RT ms lo frequency= + −()900 90 * g � (E6.2)

The predicted average response duration for the word decreases by 90ms for every
increase in log frequency by one unit. The slope for the data discussed in Chapter 4
was –70, which was slightly less steep.

The regression model turns out to describe 38% of the variance in response dura-
tions (R2 = 0.38). But can all of this variance really be attributed to frequency? Any
regression model only knows about what its user tells it to look at. Because this model
only knows about frequency, the effect of other variables that are correlated with fre-
quency may be conflated with the frequency effect. For example, it’s known since
Zipf’s work that more frequent words tend to be shorter than less frequent words
(Zipf, 1949). Clearly, one can expect that shorter words are read more quickly, so
perhaps the frequency effect seen in equation E6.2 is in part due to word length. To
assess the influence of frequency while holding word length constant, you can add
word length (number of phonemes) as an additional predictor to the model.

RT b b lo frequency b word len th= + +0 1 2* *g g � (E6.3)

6	 Multiple Regression

15034-2313q-3pass-r02.indd 103 10/3/2019 5:51:31 PM

104  Multiple Regression

Running the actual regression in R yields the following estimates for b0, b1, and b2.

RT ms frequency len th= + −() +750 70 20* * g � (E6.4)

This model now describes 49% of the variance in response durations (R2 = 0.49).
Adding word length has increased the amount of variance described, which suggests
that this predictor is capturing something meaningful about reading times. The coeffi-
cient of the new word length predictor is positive (+20), which indicates that, as word
length increases, response durations increase as well. In other words, longer words
take more time to read.

Notice that the intercept has dropped from 900ms in the model without word length
to 750ms in the model with word length. To explain this change, it is important to
remind yourself of the meaning of the intercept: the intercept is the predicted value
when x = 0. In this model, 900ms is the prediction for a word with 0 log frequency and
0 word length. As word lengths cannot be 0, this intercept is not particularly meaning-
ful, which is why it might be a good idea to center both predictors (see Chapter 5), in
which case the intercept will change to be the response duration for a word with aver-
age frequency and average length.

What is most interesting to us right now is that the magnitude of the frequency coef-
ficient has decreased from –90 to –70 as a result of adding the word length predictor, a
change of about 20%. This suggests that the effect of frequency in the first model was
in fact somewhat confounded with word length. Once one controls for word length,
the effect of frequency does not appear as strong.

In the present example, both frequency and word length are shown to influence
response durations. However, in some cases, adding another predictor can completely
nullify the effects of an existing predictor. For example, in a language acquisition
study, you could model vocabulary size as a function of body height. Some thinking
will tell you that there has to be a relationship between body height and vocabulary
size: vocabularies increase as kids grow older, which happens to coincide with them
becoming taller. However, this height effect is almost surely entirely attributable to the
concomitant age differences. When vocabulary size is modeled as a function of both
body height and age, the height predictor is likely going to have a tiny effect, if at all.

It is important to recognize that multiple regression is not the same as running lots
of simple regressions (see Morrissey & Ruxton, 2018 for an illustrative explanation).
The coefficients in multiple regression assume a different meaning; specifically, each
coefficient becomes a partial regression coefficient, measuring the effect of one pre-
dictor while holding all other predictors constant.

Let’s think about what this means in the case of the word frequency model
above. The partial regression coefficient of –70 is to be interpreted as the change
in response durations as a function of word frequency, while holding word length
constant. Come to think of it, this is actually quite a strange quantity, because in
actual language word length and word frequency are of course correlated with
each other. However, the multiple regression coefficients allow making predic-
tions for highly frequent words that are long, or for very infrequent words that
are short. Thus, the true purpose of moving from simple regression to multiple
regression is to disentangle the direct effects of specific variables in a study, with

15034-2313q-3pass-r02.indd 104 10/3/2019 5:51:32 PM

Multiple Regression  105

each coefficient representing a variable’s influence while statistically controlling
for the other variables.

6.2. � Multiple Regression with Standardized Coefficients
In this section, you will retrace the steps of an actual analysis from Winter et al. (2017).
The data was already briefly introduced in Chapter 2. To remind you, the concept of
iconicity describes whether the form of words resembles their meaning. For arbitrary
words, there is no apparent correspondence between form and meaning; for example,
the word purple does not sound like the color the word denotes. However, onomato-
poeic words such as beeping, buzzing, and squealing mimic the respective sounds.

In Winter et al. (2017), we measured iconicity via a rating scale, asking native
speakers a simple question: ‘How much does this word sound like what it means?’
The scale went from –5 (the word sounds like the opposite of what it means) to +5
(the word sounds exactly like what it means). There are several shortcomings with an
approach that relies on native speaker intuitions (see discussion in Perry, Perlman &
Lupyan, 2015), but for now we are going to accept the fact that the iconicity ratings
give us as a rough measure of a word’s iconicity. In the following analysis, you will
assess which factors predict iconicity ratings.

First, load the required packages (tidyverse and broom) and data into your
current R session:

library(tidyverse)
library(broom)

icon <- read_csv('perry_winter_2017_iconicity.csv')

icon %>% print(n = 4, width = Inf)

A tibble: 3,001 x 8
 Word POS SER CorteseImag Conc Syst
 <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 a Grammatical NA NA 1.46 NA
2 abide Verb NA NA 1.68 NA
3 able Adjective 1.73 NA 2.38 NA
4 about Grammatical 1.2 NA 1.77 NA
 Freq Iconicity
 <int> <dbl>
1 1041179 0.462
2 138 0.25
3 8155 0.467
4 185206 -0.1
... with 2,997 more rows

In our 2017 paper (Winter et al., 2017), we modelled iconicity as a function of sen-
sory experience (SER), log word frequency, imageability, and what is called ‘systema-
ticity’ (see Monaghan, Shillcock, Christiansen, & Kirby, 2014; Dingemanse, Blasi,

15034-2313q-3pass-r02.indd 105 10/3/2019 5:51:32 PM

106  Multiple Regression

Lupyan, Christiansen, & Monaghan, 2015). I won’t go into the details of each of these
variables, but you should know that they are all continuous variables.1 Moreover, it’s
important to mention that each one was included in our study because we had moti-
vated hypotheses for doing so (check out the discussion in Winter et al., 2017). It’s a
good idea to have a clear plan before you conduct a regression analysis.

Before fitting the regression model, we should log-transform the frequency predic-
tor (see Chapter 5).

icon <- mutate(icon, Log10Freq = log10(Freq))

Now that we have all variables in place, let’s fit a multiple regression model. Simply list
all predictors separated by plus signs. The order in which you enter the predictors into the
formula does not matter, as everything is estimated simultaneously.

icon_mdl <- lm(Iconicity ~ SER + CorteseImag +
 Syst + Log10Freq, data = icon)

How much variance in iconicity ratings is accounted for by the entire model?

glance(icon_mdl)$r.squared

[1] 0.2124559

The model accounts for about 21% of the variance in iconicity ratings (I’d say that’s
quite high for linguistic data). Next, investigate the model coefficients.

tidy(icon_mdl) %>% select(term, estimate)

 term estimate
1 (Intercept) 1.5447582
2 SER 0.4971256
3 CorteseImag -0.2632799
4 Syst 401.5243106
5 Log10Freq -0.2516259

To facilitate the following discussion, it makes sense to round the coefficients. For this,
the round() function can be used. This function takes two arguments: first, a vector
of numbers; second, a number indicating to how many decimals the vector should be
rounded to. For the code below, the ‘1’ indicates that numbers are rounded to one decimal.2

1	 The sensory experience measure comes from Juhasz and Yap’s (2013) rating study. The word fre-
quency data comes from SUBTLEX (Brysbaert & New, 2009). The imageability data comes from
Cortese and Fugett (2004). The systematicity measure comes from Monaghan et al. (2014).

2	 A quick note on rounding: for the write-up of your results, you often have to report rounded num-
bers, which is what most journals require. You may ask: ‘But doesn’t rounding involve the loss of

15034-2313q-3pass-r02.indd 106 10/3/2019 5:51:32 PM

Multiple Regression  107

tidy(icon_mdl) %>% select(term, estimate) %>%
 mutate(estimate = round(estimate, 1))

 term estimate
1 (Intercept) 1.5
2 SER 0.5
3 CorteseImag -0.3
4 Syst 401.5
5 Log10Freq -0.3

To put the output into the format of a predictive equation, you simply need to read
off the estimate column from top to bottom, lining up the terms from left to right
via addition.

iconicity SER Ima Syst

lo fre

= + + −() +

+ −()
1 5 0 5 0 3 401 5

0 3

. . * . * . *

. *

g

g qq � (E6.5)

As always, plugging in some numbers helps to get a feel for this equation. Let’s derive
the prediction for a word that has a sensory experience rating of 2, an imageability rating
of 1, a systematicity of 0, and a log frequency of 0.3 Then the equation becomes:

iconicity = + + −() + + −()1 5 0 5 2 0 3 1 401 5 0 0 3 0. . * . * . * . * � (E6.6)

The systematicity and frequency terms drop out through multiplication with 0.
Doing the arithmetic yields a predicted iconicity rating of 2.2.

You may think that the Syst predictor has the strongest influence on iconicity, as
it is associated with the largest coefficient in the coefficient table. However, there’s a
catch. Let’s check the range of the systematicity.4

range(icon$Syst, na.rm = TRUE)

[1] -0.000481104 0.000640891

precision?’ Yes, it does, but that’s a good thing. You shouldn’t invoke a sense of ‘false precision’.
After all, linguistics isn’t rocket science and estimates vary from sample to sample anyway. Dis-
playing numbers with lots of decimals may give the false impression that these decimals actually
play a big role. On top of that, nobody wants to read numbers with lots of decimals, which usually
detracts from the core message.

3	 A log frequency of 0 corresponds to a raw word frequency of 1, since 100=1.
4	 Because the systematicity variable has missing values (NA), you need to specify the additional argu-

ment na.rm = TRUE. This will result in dropping NA values when computing the range. Notice,
furthermore, that the lm() function automatically excludes data points for which there are missing
values.

15034-2313q-3pass-r02.indd 107 10/3/2019 5:51:34 PM

108  Multiple Regression

The Syst predictor ranges from one really small negative number to an equally
small positive number. The regression coefficient of the systematicity predictor
(+401.5) is reported in terms of a one-unit change. Given this very narrow range, a
one-unit change is a massive jump, in fact, it exceeds the range for which the systema-
ticity measure is attested.

This is a telling example of how you always have to keep the metric of each variable
in mind when performing multiple regression. What does a one-unit change mean for
frequency? What does a one-unit change mean for imageability? And so on.

Standardization can be used to make the slopes more comparable (see Chapter 5).
Remember that standardization involves subtracting the mean (centering) and subse-
quently dividing the centered scores by the standard deviation. Since each variable has
a different standard deviation, this involves dividing each variable by a different num-
ber. In effect, you are dividing the metric of the data out of each variable, which makes
the variables more comparable. The following code achieves this for all predictors:

icon <- mutate(icon,
 SER_z = scale(SER),
 CorteseImag_z = scale(CorteseImag),
 Syst_z = scale(Syst),
 Freq_z = scale(Log10Freq))

Now that all variables are standardized, you can fit a new linear model.

icon_mdl_z <- lm(Iconicity ~ SER_z + CorteseImag_z +
 Syst_z + Freq_z, data = icon)

To reiterate a point made in Chapter 5, let’s begin by verifying that the R2 value
hasn’t changed.

glance(icon_mdl_z)$r.squared

[1] 0.2124559

The fact that the R2 value is the same as mentioned above is a reminder that the
underlying model hasn’t changed through standardization. However, the coefficients
are represented in different units:5

tidy(icon_mdl_z) %>% select(term, estimate) %>%
 mutate(estimate = round(estimate, 1))

5	 Let me use this opportunity to sneak in another footnote on rounding. When you want to report
rounded numbers in your paper, it’s best to do the rounding in R using the round() function.
Doing the rounding in your head is error-prone. Ideally, your knitted markdown file contains exactly
the same (rounded) numerical values that are reported in the write-up of your results.

15034-2313q-3pass-r02.indd 108 10/3/2019 5:51:34 PM

Multiple Regression  109

 term estimate
1 (Intercept) 1.3
2 SER_z 0.5
3 CorteseImag_z -0.4
4 Syst_z 0.0
5 Freq_z -0.3

For these coefficients, a ‘one-unit change’ always corresponds to a change of 1
standard deviation. Given this rescaling of the predictors, it is now apparent that the
sensory experience predictor has the biggest effect on iconicity, with a slope of +0.5.
This translates into the following statement: ‘For each increase in SER by 1 standard
deviation (holding all other variables constant), iconicity increases by +0.5.’ Notice
that the systematicity predictor is now close to 0.

6.3. � Assessing Assumptions
The current iconicity model is ideal for picking up some points that were left over
from Chapter 4’s discussion of the assumptions of regression (normality of residuals,
homoscedasticity of residuals). So, this section will seize the opportunity and go off
at a tangent.

It’s generally recommended to assess normality and homoscedasticity visually. To
assess whether the residuals are normally distributed, one may draw a histogram of
the residuals, as shown in Figure 6.1a. For the icon_mdl model discussed above, the
distribution of the residuals looks good. A better way to graphically explore the nor-
mality assumption is via a ‘quantile-quantile’ plot (Q-Q plot), shown in Figure 6.1b.
When the sample quantiles in this plot assemble into a straight line, the residuals
conform with the normal distribution.6

According to the constant variance assumption, the error should be equal across the
fitted values. This can be investigated via a ‘residual plot’, as shown in Figure 6.1c.
This plots the residuals (y-axis) against the fitted values (x-axis). When the constant
variance assumption is satisfied, the spread of the residuals should be approximately
equal across the range of fitted values; that is, the residual plot should look basically
look like a blob. Any systematic patterns in the residual plot are reasons to be con-
cerned. The residual plot in Figure 6.1c looks pretty good. Perhaps the variance of
the residuals funnels out a tad bit towards higher fitted values, but there clearly is no
drastic violation of the constant variance assumption.

Newcomers to regression modeling often find it discomforting that the assump-
tions are assessed visually. In fact, formal tests for checking assumptions do
exist, such as the Shapiro-Wilk test of normality. However, applied statisticians

6	 To create this plot, every residual is transformed into a percentile (or quantile), e.g., the first residual
of icon_mdl is –1.1, which is the 13.8th percentile (13.8% of the residuals are below this num-
ber). The question the Q-Q plot answers is: what is the corresponding numerical value of the 13.8th
percentile on the normal distribution? If the values are the same, they will fit on a straight line,
which indicates that the two distributions (the distribution of the residuals and the theoretical nor-
mal distribution) are very similar.

15034-2313q-3pass-r02.indd 109 10/3/2019 5:51:34 PM

110  Multiple Regression

generally prefer visual diagnostics (Quinn & Keough, 2002; Faraway, 2005, 2006:
14; Zuur et al., 2009, Zuur, Ieno, & Elphick, 2010). The most important reason
for using graphical validation of assumptions is that it tells you more about your
model and the data.7 For example, the residuals may reveal a hidden nonlinearity,
which would suggest adding a nonlinear term to your model (see Chapter 8). Or
the residuals may reveal extreme values that are worth inspecting in more detail.
One should also remember that a model’s adherence to the normality and constant
variance assumptions is not a strict either/or. Faraway (2006: 14) says that “It is
virtually impossible to verify that a given model is exactly correct. The purpose of
the diagnostics is more to check whether the model is not grossly wrong."

Let’s implement the graphical diagnostics discussed above. First, extract the residu-
als of the model into an object called res. This is not strictly speaking necessary, but
it will save you some typing further down the line.

res <- residuals(icon_mdl_z)

For the following plots, the base R plotting functions will suit our needs better than
ggplot(). Let’s create a plot matrix with three plots in one row, which is achieved
by setting the mfrow argument of the par() function (the name stands for plotting
‘parameters’) to c(1, 3), which will create a one-row-by-three-column matrix. The
hist() function will plot into the first column of this matrix. The qqnorm() cre-
ates a Q-Q plot. A Q-Q line can be added into the existing plot with qqline(). In
the final step, a residual plot is added to the third column of the plot matrix. Executing
all of the following commands in one sequence will yield a series of plots that looks
similar to Figure 6.1.

Set graphical parameters to generate plot matrix:

par(mfrow = c(1, 3))

7	 Here are some other reasons: each of these tests also has assumptions (which may or may not
be violated), the tests rely on hard cut-offs such as significance tests (even though adherence to
assumptions is a graded notion), and the tests may commit Type I errors (false positives) or Type II
errors (false negatives) (see Chapter 10 for an explanation of these concepts).

Figure 6.1.  (a) Histogram, (b) Q-Q plot, and (c) residual plot of icon_mdl

15034-2313q-3pass-r02.indd 110 10/3/2019 5:51:34 PM

DolanA
Highlight
curly quotes please

Multiple Regression  111

Plot 1, histogram:

hist(res)

Plot 2, Q-Q plot:

qqnorm(res)
qqline(res)

Plot 3, residual plot:

plot(fitted(icon_mdl_z), res)

To gauge your intuition about residual plots, the following code (adapted from Far-
away, 2005) gives you an idea of what good residual plots should look like. The code
uses a for loop to repeat a plotting command nine times. As a result, the 3 X 3 plot
matrix that is set up by par() is iteratively filled with plots of 50 random data points.

par(mfrow = c(3, 3)) # setup 3 X 3 plot matrix

for (i in 1:9) plot(rnorm(50), rnorm(50))

Figure 6.2. � Examples of good residual plots (generated via normally distributed random
numbers) with 50 data points each

15034-2313q-3pass-r02.indd 111 10/3/2019 5:51:35 PM

112  Multiple Regression

It is easy to see patterns in these plots. In saying that these are supposed to be ‘good’
residual plots, I mean that the visualized data has been generated by a process that is
known to be normally distributed with no change in variance (no heteroscedasticity).
However, as a result of chance processes, there could always be apparent patterns.

The next code chunk generates bad residual plots with non-constant variance.
Again, I recommend executing this command repeatedly to train your eyes.

par(mfrow = c(3, 3))

for (i in 1:9) plot(1:50, (1:50) * rnorm(50))

The plots shown in Figure 6.3 reveal non-constant variance because, as you
move along the fitted values from left to right, the residuals progressively fan out
(heteroscedasticity).

6.4. � Collinearity
When doing a multiple regression analysis, collinearity describes situations where
one predictor can be predicted by other predictors. Collinearity frequently arises from
highly correlated predictors, and it makes regression models harder to interpret (see
Zuur et al., 2010: 9).

Figure 6.3. � Examples of ‘bad’ residual plots with non-constant variance

15034-2313q-3pass-r02.indd 112 10/3/2019 5:51:35 PM

Multiple Regression  113

Let’s demonstrate collinearity with a familiar example. The following code recre-
ates the randomly generated data from Chapter 4. There is one additional detail: set-
ting a seed value for the random number generation via set.seed() ensures that
you and I are working with the same random numbers. In this case, I have chosen
the seed value 42 (so as long as you and I use the same number, we will get the same
results).

set.seed(42) # seed value for random numbers

x <- rnorm(50)

y <- 10 + 3 * x + rnorm(50)

tidy(lm(y ~ x))

 term estimate std.error statistic p.value
1 (Intercept) 10.093852 0.1283994 78.61294 2.218721e-52
2 x 2.807983 0.1125854 24.94091 3.960627e-29

The resulting regression model estimates a slope of about +2.81. So far, so good.
What if you added a second predictor to the model that was almost exactly the same
as the first? To create such a scenario, make a copy of x.

x2 <- x

Let’s change one number of the new x2 vector so that the two vectors are not
exactly equal.

x2[50] <- -1

As expected from two vectors that only differ in one number, there is extreme cor-
relation (Pearson’s r is 0.98; see Chapter 5).

cor(x, x2)

[1] 0.9793935

Given this setup, it comes as no surprise that x2 also predicts y, just as was the
case with x.

tidy(lm(y ~ x2))

 term estimate std.error statistic p.value
1 (Intercept) 10.181083 0.1669154 60.99548 3.833676e-47
2 x2 2.724396 0.1457204 18.69605 1.123051e-23

What happens if you enter x and x2 together into the same model?

15034-2313q-3pass-r02.indd 113 10/3/2019 5:51:35 PM

114  Multiple Regression

xmdl_both <- lm(y ~ x + x2)

tidy(xmdl_both)

 term estimate std.error statistic     p.value
1  (Intercept)    10.0794940   0.1303314 77.3374070     3.352074e-51
2 x   3.2260125 0.5599087    5.7616761  6.164895e-07
3 x2   -0.4255257 0.5582050    -0.7623108   4.496834e-01

Notice how much the slope of x2 has changed. It’s negative, even though the data
has been set up so that x2 and y are positively related. When dealing with strong col-
linearity, it often happens that the coefficients change drastically depending on which
predictors are in the model.

To assess whether you have to worry about collinearity in your analysis, you can
use ‘variance inflation factors’ (VIFs). These measure the degree to which one predic-
tor can be accounted for by the other predictors. There are different recommendations
for what constitutes a worrisome VIF value, with some recommending that VIF values
larger than 10 indicate collinearity issues (Montgomery & Peck, 1992). Following
Zuur et al. (2010), I have used a more stringent cut-off of 3 or 4 in past studies. How-
ever, there are also researchers who warn against using variance inflation factors to
make decisions about which predictors to include, an issue to which we return below
(O’brien, 2007; Morrissey & Ruxton, 2018).

The vif() function from the car package (Fox & Weisberg, 2011) can be used to
compute variance inflation factors. For xmdl_both, the variance inflation factors are
very high, certainly much in excess of 10, thus indicating strong collinearity.

library(car)

vif(xmdl_both)

 x x2
24.51677 24.51677

Let’s compare the variance inflation factors of this model to those of the iconicity
model fitted earlier in this chapter.

vif(icon_mdl_z)

 SER_z CorteseImag_z Syst_z Freq_z
1.148597 1.143599 1.015054 1.020376

For the iconicity model, all variance inflation factors are close to 1, which is good.
The actual analysis in presented in Winter et al. (2017) did run into some collinearity
issues, specifically caused by the high correlation of concreteness and imageability.
We ultimately decided to drop concreteness not only because of high variance infla-
tion factors, but also because it measures a similar theoretical construct as imageabil-
ity (see Connell & Lynott, 2012). This exclusion was described and justified in the
paper. In addition, the supplementary materials showed that our main results were not

15034-2313q-3pass-r02.indd 114 10/3/2019 5:51:35 PM

Multiple Regression  115

affected by swapping concreteness in for imageability. Neither were our main conclu-
sions affected by leaving both variables in the same model.

It is important to mention that sample size interacts with collinearity. All else being
equal, more data means that regression coefficients can be estimated more precisely
(O’brien, 2007; Morrissey & Ruxton, 2018). So, rather than excluding variables from
a study, you could also collect more data so that coefficients can be measured precisely
even in the presence of collinearity. It is also important to emphasize that collinearity
should not be treated as a fault of multiple regression. It simply points to situations
where the direct effects are difficult to measure when the predictors are quite entangled.

If you are dealing with a situation where you have rampant collinearity for lots of pre-
dictors, regression may not be the answer. There are approaches better suited for finding
the most impactful predictors among large sets of potentially collinear variables, such as
random forests (Breiman, 2001; for an introduction, see Strobl, Malley, & Tutz, 2009;
for a linguistic application, see Tagliamonte & Baayen, 2012). Tomaschek, Hendrix, and
Baayen (2018) discuss a variety of alternative approaches to deal with collinearity in lin-
guistic data. However, to truly find out which of multiple underlying factors may cause a
result, sometimes it may be necessary to conduct additional experiments (for a linguistic
example of this, see Roettger, Winter, Grawunder, Kirby, & Grice, 2014).

It is best to think about collinearity during the planning phase of your study. For
example, if there are three highly correlated measures of speech rate (such as ‘sen-
tences by second’, ‘words by second’, and ‘syllables by second’), you could probably
make a theoretically motivated choice about which one is the most appropriate pre-
dictor. Including them all into the same model would presumably not advance your
theory anyway, and it will make interpreting your model harder.

6.5. � Adjusted R2

Now that we know more about multiple regression, we are in a position to talk about
‘adjusted R2’ which you have already seen in various model summaries in previ-
ous chapters. Just like R2, adjusted R2 measures how much the predictors of a model
describe the variance of the response. However, adjusted R2 is more conservative;
it will always be lower than R2, because it includes a penalizing term that lowers R2
depending on how many predictors are included in a model.8 This is done to coun-
teract the fact that adding more predictors to a model always leads to an increased
opportunity to capture more variance in the response. Thus, adjusted R2 is there to
counteract an unjust inflation of R2 due to including too many predictors. This helps
to diagnose and prevent ‘overfitting’, which describes situations when models corre-
spond too closely to the idiosyncratic patterns of particular datasets.

The model summary output generated by the broom function glance() shows
that R2 and adjusted R2 correspond very closely to each other in the iconicity model
described above. This suggests that there is no problem with overfitting. The presence

8	 The formula is R
R N
N kadj

2
2

1
1 1

1
= −

−() −()
− −

. As you can see, adjusted R2 is a transformation of R2

Crucially, the formula contains a term for the number of parameters in a model, k. N represents the
number of data points.

15034-2313q-3pass-r02.indd 115 10/3/2019 5:51:36 PM

116  Multiple Regression

of junk predictors would be indicated by an adjusted R2 value that is much lower than
the corresponding R2 value.

glance(icon_mdl_z)

 r.squared adj.r.squared sigma statistic p.value
1 0.2124559 0.2092545 1.001714 66.36346 9.786184e-50
 df logLik AIC BIC deviance df.residual
1 5 -1402.517 2817.035 2846.415 987.3758 984

6.6. � Chapter Conclusions
This chapter introduced multiple regression, an extension of simple linear regres-
sion. Performing multiple regression allows you to look at the effects of one predictor
while holding all other predictors constant. To increase the comparability of regres-
sion slopes, it may be useful to standardize predictor variables. We then took a tangent
and explored the residuals of the multiple regression model using visual diagnostics.
After this, the chapter covered the topic of collinearity, which involves dependencies
between the predictors that can make the interpretation of model coefficients difficult.
Finally, you have been introduced to adjusted R2, a more conservative version of R2
that takes the number of predictor variables into account.

6.7. � Exercise

6.7.1. � Exercise: Analyzing the ELP Data

Load the ‘ELP_full_length_frequency.csv’ data into R and fit a regression model
where raw response durations (column: RT) are modeled as a function of log10 fre-
quency and length (as in Chapter 6.1). Then check the variance inflation factors. Next,
check how well your model fits the normality and homoscedasticity assumption.

15034-2313q-3pass-r02.indd 116 10/3/2019 5:51:36 PM

7.1. � Introduction
All predictors discussed in this book up to this point were continuous. What if you
wanted to know whether a response differed between two or more discrete groups?
For example, you may want to show that voice pitch differs by biological sex (female
versus male), that vowel duration differs by place of articulation (e.g., /a/ versus /u/),
or that reading times depend on grammatical voice (active versus passive). This chap-
ter covers how to model responses as a function of such categorical predictors.

7.2. � Modeling the Emotional Valence of Taste
and Smell Words

The example is drawn from Winter (2016), where I was interested in the evaluative
functions of perceptual adjectives. Although a word’s evaluative or ‘affective’ qual-
ity can differ along many important dimensions (Hunston, 2007; Bednarek, 2008),
I focused exclusively on the positive/negative dimension, that is, whether a word is
overall pleasant or unpleasant. To operationalize this dimension, I used the Warriner
et al. (2013) emotional valence ratings that you already explored in Chapter 3.

It has been suggested that smell words are overall more negative (Rouby & Bensafi,
2002: 148–149; Krifka, 2010; Jurafsky, 2014: 96), especially when compared to taste
words. This can also be assessed via the contexts in which words occur. For example,
the taste word sweet collocates with such pleasant nouns as aroma, music, smile, and
dreams. On the other hand, the smell word rancid commonly occurs with such nouns
as smell, odor, grease, and sweat. The emotional valence scores of these nouns can be
used to derive what I call a ‘context valence’ measure for each adjective (see Winter,
2016; see also Snefjella & Kuperman, 2016). For example, the average noun context
valence is more positive for sweet (5.7) than for rancid (5.1). In this chapter, you will
build a linear model to describe the relationship between context valence and sensory
modality (taste versus smell).

Figure 7.1 plots the noun context valence measure for all the taste words (diamond
shapes) and smell words (circles).1 This figure shows that taste words tend to occur
in more positive contexts than smell words, although there is considerable overlap
between the two distributions.

1	 The sensory modality classifications are taken from Lynott and Connell (2009).

7	 Categorical Predictors

15034-2313q-3pass-r02.indd 117 10/3/2019 5:51:36 PM

118  Categorical Predictors

Figure 7.1. � (a) Noun context valence for taste and smell words; (b) treatment coding, with
smell and taste words positioned at 0 and 1, respectively; (c) sum-coding, with
smell = –1 and taste = +1; white squares represent intercepts

Regression works well with sets of numbers. To incorporate the categorical factor
‘modality’ into a regression model, the labels ‘taste’ and ‘smell’ are replaced with
numerical identifiers, a process which is called ‘dummy coding’. Geometrically,
assigning numbers to categories means that the categories are placed into a coordinate
system, which is depicted in Figure 7.1b. In this case, smell words are located at x = 0,
and taste words at x = 1.

The particular coding system used in Figure 7.1b is called ‘treatment coding’.2 The
overarching term used for treatment coding and other coding systems is ‘contrasts’.
Within the treatment coding system, the category at x = 0 is called the reference level,
and it will assume the role of the intercept of the regression model. The intercept is
represented by the white square in Figure 7.1b, which is the mean of the smell words
in this case.

Now, remember two facts from the previous chapters: first, the mean is the value
that is closest to all data points for a univariate dataset. Second, regression attempts
to minimize the residuals. Taken together, these two facts entail that when a regres-
sion model is fitted onto a variable with two categories, the line has to go through
the means of both categories. The regression line shown in Figure 7.1b can only be
interpreted at the discrete points x = 0 and x = 1. Predictions generated for intermediate
values do not make any sense.

Remember that a slope can be paraphrased as ‘rise over run’ (Chapter 4). So, for
Figure 7.1b, what’s the ‘rise’? As you move from x = 0 to x = 1, you ascend by
+0 3. emotional valence points, the difference between the two means. What’s the

corresponding ‘run’? As you only move from x = 0 to x = 1, the run is exactly one

unit. Applying the ‘rise over run’ formula then yields 0 3
1

0 3. . .= Thus, the slope

of the modality predictor is exactly equal to the mean difference between the two

2	 ‘Dummy coding’ is often used synonymously with ‘treatment coding’.

15034-2313q-3pass-r02.indd 118 10/3/2019 5:51:38 PM

Categorical Predictors  119

groups. This means that, for categorical predictors, your regression slopes are actually
differences between groups! The predictive equation for the data shown in Figure 7.1b
is the following:

context valence mod= + 5 5 0 3. . * aality
 (smell words) (changge from smell to taste)

� (E7.1)

Let’s plug in the corresponding dummy codes. When modality = 1, you get
5 5 0 3 1 5 8. . * . .+ = When modality = 0, you get 5 5 0 3 0 5 5. . * . .+ = You can think of the
latter as not applying the change from taste to smell.

The choice of the reference level is up to the user. There’s nothing that stops you
from making ‘taste’ the reference level rather than ‘smell’. In that case, your equation
would look like this:

context valence modality= + −()5 8 0 3. . * � (E7.2)

You can think of E7.1 and E7.2 as two perspectives on the same data. You either
view the data from the perspective of smell words, looking ‘up’ towards taste words
(E7.1), or you view the data from the perspective of taste words, looking ‘down’
towards smell words (E7.2). The question of assigning reference levels is only a ques-
tion of representation.3

7.3. � Processing the Taste and Smell Data
Let’s begin by loading in the relevant data.

library(tidyverse)
library(broom)

senses <- read_csv('winter_2016_senses_valence.csv')

senses

A tibble: 405 x 3
 Word Modality Val
 <chr> <chr> <dbl>
 1 abrasive Touch 5.40
 2 absorbent Sight 5.88
 3 aching Touch 5.23
 4 acidic Taste 5.54
 5 acrid Smell 5.17
 6 adhesive Touch 5.24
 7 alcoholic Taste 5.56

3	 Harkening back to the discussion in Chapter 5, changing the reference level is a linear transforma-
tion, as it leaves the relationship between the data points untouched.

15034-2313q-3pass-r02.indd 119 10/3/2019 5:51:41 PM

120  Categorical Predictors
 8 alive Sight 6.04
 9 amber Sight 5.72
10 angular Sight 5.48
... with 395 more rows

This data pairs the Lynott and Connell (2009) modality classifications with the
context valence measure from Winter (2016).4 It’s a good idea to spend some time
familiarizing yourself with this data. For example, you could tabulate the content of
the Modality column to see how many words there are per sensory modality (see
Chapter 2). It’s also a good idea to explore the range(), mean(), and sd() of the
Val column. In addition, histograms may be useful to get an overview. I will skip
these steps now for the sake of discussing how to deal with categorical predictors, but
you are welcome to have a thorough look at this dataset before you continue.

Let’s reduce the tibble to a subset containing only taste and smell words.

chem <- filter(senses, Modality %in% c('Taste', 'Smell'))

It’s a good idea to verify that this has actually worked. The following command
tabulates the number of words per sensory modality. As you can see, there are only
taste and smell words.

table(chem$Modality)

Smell Taste
 25 47

Let’s compute the means and standard deviations for each category. For this, use
group_by() together with summarize(). Grouping the tibble ensures that the
summarize() function knows what groups to summarize by.

chem %>% group_by(Modality) %>%
 summarize(M = mean(Val), SD = sd(Val))

A tibble: 2 x 3
 Modality M SD
 <chr> <dbl> <dbl>
1 Smell 5.47 0.336
2 Taste 5.81 0.303

These values would be good to report in a paper. For example, you might want to
write a statement such as the following: ‘The average context valence of taste words
was higher (M = 5.81, SD = 0.30) than the average context valence of smell words
(M = 5.47, SD = 0.34).’

4	 To construct the context valence measure, I used the emotional valence ratings by Warriner et al.
(2013) and the Corpus of Contemporary American English (Davies, 2008).

15034-2313q-3pass-r02.indd 120 10/3/2019 5:51:41 PM

Categorical Predictors  121

How could you visualize this difference? One option is a box-and-whiskers plot
(see Chapter 3.6). For the following ggplot2, the categorical predictor is mapped
to the x-values, and the continuous response is mapped to the y-values. You can addi-
tionally map the categorical predictor to the fill argument, which fills the boxes
according to Modality. The additional command scale_fill_brewer()
adds a “Color Brewer" palette. There are numerous palettes to explore on
http://colorbrewer2.org. The palette picked here (called ‘PuOr’, which stands for
‘PurpleOrange’) is ‘photocopy safe’, so that the two colors appear recognizably dif-
ferent from each other when printed in black and white. The resulting boxplot is
shown in Figure 7.2 (left plot).

chem %>% ggplot(aes(x = Modality, y = Val, fill = Modality)) +
 geom_boxplot() + theme_minimal() +
 scale_fill_brewer(palette = 'PuOr')

Alternatively, you could create a density graph (see Figure 7.2, right plot). This is
essentially a smoothed version of a histogram (using what’s called ‘kernel density esti-
mation’, which won’t be explained here). The alpha of the density graph is set to 0.5
to make the filling of the density curves transparent (play with different alpha values
to see how this changes the look and feel of this plot).

chem %>% ggplot(aes(x = Val, fill = Modality)) +
 geom_density(alpha = 0.5) +
 scale_fill_brewer(palette = 'PuOr')

Now that you have a thorough understanding of this dataset, you are in a good posi-
tion to perform a linear regression analysis.

Figure 7.2. � Left: boxplot of the emotional valence difference between taste and smell
words; right: kernel density plot of the same data

15034-2313q-3pass-r02.indd 121 10/3/2019 5:51:41 PM

DolanA
Highlight
curly quotes please

122  Categorical Predictors

7.4. � Treatment Coding in R
Let us fit a regression model where valence is modeled as a function of modality.

chem_mdl <- lm(Val ~ Modality, data = chem)

tidy(chem_mdl) %>% select(term, estimate)

 term estimate
1 (Intercept) 5.4710116
2 ModalityTaste 0.3371123

Notice that the estimate for the modality predictor is shown as ModalityTaste,
even though you used just ‘Modality’ in the model formula. This always happens
with categorical predictors that are treatment-coded. Whatever category is mentioned
in the slope of the output (here: Taste) corresponds to the ‘1’ in the treatment coding
scheme. This means that the category that is not explicitly mentioned in the coefficient
output corresponds to the ‘0’ and is hidden in the intercept. In this case, the intercept
is the average context valence of smell words. The ModalityTaste slope then
represents a change from the intercept (Smell) towards Taste.

Checking the fitted values shows that this model only makes two predictions, one
for each category.

head(fitted(chem_mdl))

 1 2 3 4 5 6
5.808124 5.471012 5.808124 5.471012 5.471012 5.808124

Since the model only makes two predictions (that are repeated for each data point,
depending on whether it is a taste or a smell word), you can easily ‘read off’ what this
model predicts from the output of the fitted() function. Nevertheless, because
this will be more useful when dealing with complex models, let’s use predict() to
generate the predictions instead. You have first encountered the predict() function
in Chapter 4. Start by creating a data frame or tibble to generate predictions for.

chem_preds <- tibble(Modality = unique(chem$Modality))

The unique() function is used here to reduce the Modality column to the
unique types.5

unique(chem$Modality)

[1] "Taste" "Smell"

5	 The unique() function is quite similar to levels(). However, the latter can only be used for
factor vectors. Currently, the Modality column is a character vector.

15034-2313q-3pass-r02.indd 122 10/3/2019 5:51:41 PM

Categorical Predictors  123

Finally, let’s compute the fitted values and append them to the chem_preds tibble.

chem_preds$fit <- predict(chem_mdl, chem_preds)

chem_preds

A tibble: 2 x 2
 Modality fit
 <chr> <dbl>
1 Taste 5.81
2 Smell 5.47

These predictions correspond to what was discussed earlier in the chapter.

7.5. � Doing Dummy Coding ‘By Hand’
You would usually not do this in an actual data analysis, but for pedagogical reasons
it helps to create the dummy codes yourself. The following code creates a new
column Mod01 using ifelse(). This function spits out ‘1’ if the statement
‘Modality == 'Taste'’ is TRUE, and ‘0’ if it is FALSE.

chem <- mutate(chem,
 Mod01 = ifelse(Modality == 'Taste', 1, 0))

Let’s check that this produced the desired result:

select(chem, Modality, Mod01)

A tibble: 72 x 2
Modality Mod01
 <chr> <dbl>
 1 Taste 1
 2 Smell 0
 3 Taste 1
 4 Smell 0
 5 Smell 0
 6 Taste 1
 7 Taste 1
 8 Taste 1
 9 Taste 1
10 Taste 1
... with 62 more rows

You can now fit a linear model with the new Mod01 column as predictor.

lm(Val ~ Mod01, data = chem)

15034-2313q-3pass-r02.indd 123 10/3/2019 5:51:41 PM

124  Categorical Predictors
Call:
lm(formula = Val ~ Mod01, data = chem)

Coefficients:
(Intercept) Mod01
 5.4710 0.3371

Notice that the resulting numbers are exactly the same as from the model discussed
earlier. This highlights how a regression with a categorical predictor is the same as
regressing a continuous variable on a set of 0s and 1s.

7.6. � Changing the Reference Level
What if you wanted to change the reference level? For this, it helps to convert the
Modality column into factor vector. As discussed in Chapter 2.2, the beauty of
read_csv() and tibbles is that text data is stored in terms of character vectors,
which are much easier to manipulate than factor vectors. However, when you want to
have control of contrast coding schemes, you may have to work with factor vectors.

The following mutate() command takes the Modality column and converts it
into a factor vector, which is then immediately releveled so that ‘Taste’ becomes the
reference level.6 The releveled factor is stored in the column ModRe. Notice that this
second step only works because the column has at this second stage in the mutate()
command already been changed to a factor.7

chem <- mutate(chem,
 Modality = factor(Modality),
 ModRe = relevel(Modality, ref = 'Taste'))

Let’s check the levels of both factors with levels().

levels(chem$Modality)

[1] "Smell" "Taste"

levels(chem$ModRe) # releveled factor

[1] "Taste" "Smell"

Whatever is mentioned first in this output is the reference level. Thus, the refer-
ence level of the Modality column is ‘Smell’; the reference level of the relev-
eled ModRe column is ‘Taste’. If nothing else is specified, R will sort the levels

6	 The factor() function works just like as.factor() in this case.
7	 Rather than using relevel(), you can also define the order of levels when creating the factor.

Whatever is mentioned first in the levels argument below is made the reference level.
chem <- mutate(chem,

ModRe = factor(Modality, levels = c('Taste', 'Smell')))

15034-2313q-3pass-r02.indd 124 10/3/2019 5:51:41 PM

Categorical Predictors  125

alphanumerically, which is why ‘Smell’ is the reference level of the Modality
column.

Let’s fit the model with the releveled ModRe predictor.

lm(Val ~ ModRe, data = chem) %>%
  tidy %>%
  select(term, estimate)

 term estimate
1 (Intercept) 5.8081239
2 ModReSmell -0.3371123

You can see that the intercept is now set at the valence mean of the taste words
(5.8). The slope has reversed sign, because it is now the change from taste to smell,
which is –0.3.

There’s no mathematical reason to use either taste or smell words as reference level.
The choice is up to the researcher! So, choose whatever is most intuitive to you in the
context of your analysis.

7.7. � Sum-coding in R
Besides treatment coding, ‘sum-coding’ is another commonly used coding scheme.
Why would you want to use one coding system over another? You will see in Chap-
ter 8 that, once there are interactions in a model, sum-coding may confer some inter-
pretational advantages. For now, you are going to do a ‘dry run’, rehearsing this coding
system in a situation where both treatment coding and sum-coding are equally good.
As you progress through the book, you will see that it is important to have flexibility
about representing one’s categorical predictors.

When converting a categorical predictor into sum-codes, one category is assigned
the value –1; the other is assigned +1, as visualized in Figure 7.1c above. With this
coding scheme, the intercept is in the middle of the two categories, which is the con-
ceptual analog of ‘centering’ for categorical predictors. The y -value of the intercept
is now the mean of the means. In other words, the intercept is halfway in between the
two categories.8

Let’s apply the ‘rise over run’ formula. The ‘rise’ along the y-axis is still the
same, since the mean difference between taste and smell words hasn’t changed.
However, the ‘run’ along the x-axis has changed. Jumping from one cat-
egory (–1) to another (+1) results in an overall change of 2. This means that

the slope becomes 0 3
2

0 15. . ,= which is half the difference of the means. You

can think of this as sitting at 0 in the middle of the two categories. In one direction,
you look ‘up’ to the taste words. In the other direction, you look ‘down’ to the smell words.

Let’s sum-code the Modality column. Just in case, the following code repeats the
conversion to factor.

8	 If the data is balanced (there is an exactly equal number of data points in each category), the inter-
cept will also be the overall mean of the dataset.

15034-2313q-3pass-r02.indd 125 10/3/2019 5:51:43 PM

126  Categorical Predictors

chem <- mutate(chem, Modality = factor(Modality))

Check:

class(chem$Modality) == 'factor'

[1] TRUE

Let’s check what coding scheme R assigns to the Modality factor by default. This
can be interrogated with the contrasts() function.

contrasts(chem$Modality)

 Taste
Smell 0
Taste 1

When a factor with this coding scheme is internally sent to the linear model func-
tion, a new variable Taste is created, which assumes 0 for smell words and 1 for
taste words. This is why the output in the regression model was displayed as Modal-
ityTaste, rather than just Modality.

As mentioned above, R uses the treatment coding scheme (0/1) by default. The
contr.treatment() function can be used to create this coding scheme explicitly.
This function has one obligatory argument: the number of categories that you want the
treatment coding scheme for. Let’s see how the coding scheme for a binary category
looks like.

contr.treatment(2)

 2
1 0
2 1

The matrix that is generated by this function tells you about the assignment
of categories to numerical identifiers. Specifically, the first category (the row
with a 1) is mapped to 0; the second category (the row with a 2) is mapped to 1.
The column is named ‘2’, as the dummy variable will be named after the second cat-
egory (as was the case with ModalityTaste below).

For sum-coding, use contr.sum(). As you can see, when this function is run for
two levels, the first category is mapped to 1; the second category is mapped to –1. This
time around, the column doesn’t have a special name.

contr.sum(2)

 [,1]
1 1
2 -1

Let’s fit a regression model with a sum-coded Modality factor. First, create a
copy of the Modality column. Then recode the coding scheme to sum-codes.

15034-2313q-3pass-r02.indd 126 10/3/2019 5:51:43 PM

Categorical Predictors  127

chem <- mutate(chem, ModSum = Modality)

contrasts(chem$ModSum) <- contr.sum(2)

lm(Val ~ ModSum, data = chem) %>%
 tidy %>% select(term, estimate)

 term estimate
1 (Intercept) 5.6395677
2 ModSum1 -0.1685562

Notice that, compared to the previous model, the slope has halved. Moreover, the
intercept is now equal to the mean of the means, which can be verified as follows:

chem %>% group_by(Modality) %>%
 summarize(MeanVal = mean(Val)) %>%
 summarize(MeanOfMeans = mean(MeanVal))

A tibble: 1 x 1
 MeanOfMeans
 <dbl>
1 5.64

Notice that the modality slope is represented as ‘ModSum1’. Using the ’1’ after the
predictor name is a notational convention for representing the slopes of sum-coded
predictors in R.

The following equation uses the coefficients from the sum-coded model to derive
predictions for both categories.

 tastevalence

smell valence

= + −() +()=

= + −()
5 6 0 2 1 5 4

5 6 0 2

. . * .

. . * −−()=1 5 8.
� (E7.3)

Notice that, barring some differences due to rounding, the predictions are exactly
the same as those of the treatment-coded model.

7.8. � Categorical Predictors with More Than Two Levels
The example discussed so far only pertains to a binary categorical predictor. But what
if your predictor variable has more than two levels? Let’s go back to the senses
tibble, which contains words for all of the five senses (sight, touch, sound, taste, and
smell).

unique(senses$Modality)

[1] "Touch" "Sight" "Taste" "Smell" "Sound"

Fit a linear model with this five-level predictor to see what happens.

15034-2313q-3pass-r02.indd 127 10/3/2019 5:51:44 PM

128  Categorical Predictors

sense_all <- lm(Val ~ Modality, data = senses)

tidy(sense_all) %>% select(term:estimate) %>%
 mutate(estimate = round(estimate, 2))

 term estimate
1 (Intercept) 5.58
2 ModalitySmell -0.11
3 ModalitySound -0.17
4 ModalityTaste 0.23
5 ModalityTouch -0.05

The regression output shows four slopes, namely, four differences to one shared refer-
ence level.9 Newcomers to regression modeling are often disappointed about the fact that
a model’s coefficient table only presents a very partial view of the differences between
the categories in a study. Often, researchers are interested in some form of comparison
between all categories. There are three answers to this concern. First, observe the fact
that, with one reference level and four differences, you can actually compute predictions
for all five categories, as will be demonstrated below. Second, it is possible to test the
overall effect of the five-level predictor, as will be demonstrated in Chapter 11. Third,
it is possible to perform tests for all pairwise comparisons, which will also be demon-
strated in Chapter 11. For now, I want you to accept the fact that your regression model
represents five categories in terms of a reference level and ‘only’ four differences.

In the case of the present dataset, what is the reference level? You can determine the
reference level from the output: it is whatever category is not shown as one of the slopes.
Since you haven’t specified the reference level yourself, R takes whatever comes first in
the alphabet, which happens to be Sight in this case. Thus, the sight words are ‘hid-
den’ in the intercept. The first slope, ModalitySmell, then is the difference between
sight and smell words. The sign of this coefficient is negative, so smell words are more
negative than sight words.

To generate the model equation from the R output, read off the estimate column
from top to bottom and add all terms together:

Valence Smell Sound

Taste

= + −() + −()
+ + −(
5 58 0 11 0 17

0 23 0 05

. . * . *

. * .))*Touch � (E7.4)

To get the prediction for, say, the smell words, plug in 1 for the ‘Smell’ variable,
and 0 for all others: 5.58 + (−0.11)∗Smell = 5.47. Next, 5.58 + (−0.17)∗Sound is the
predicted context valence for sound words, and so on. To retrieve the average valence

9	 This provides a view of the corresponding treatment coding scheme:
contr.treatment(5)
 2 3 4 5
1 0 0 0 0
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1

15034-2313q-3pass-r02.indd 128 10/3/2019 5:51:46 PM

Categorical Predictors  129

of sight words, you simply need to read off the intercept. This is the only mean that
can be read off from the coefficient table without any arithmetic.

To save yourself performing these computations per hand, you always have the
predict() function at your disposal.

sense_preds <- tibble(Modality =
 sort(unique(senses$Modality)))

sense_preds$fit <- round(predict(sense_all, sense_preds), 2)

sense_preds

A tibble: 5 x 2
 Modality fit
 <chr> <dbl>
1 Sight 5.58
2 Smell 5.47
3 Sound 5.41
4 Taste 5.81
5 Touch 5.53

In this sequence of codes, sort() is wrapped around the output of unique()
to put the different modalities into alphabetical order. The output of this is saved
into the fit column of the sense_preds tibble. The result shows that the
predict() function derived the prediction for each of the five levels. These val-
ues aren’t relative to the sight reference level: these are the actual predictions for
each category.

7.9. � Assumptions Again
Let’s use the sense_all model to learn something more about residuals and the
regression assumptions that relate to the residuals. The code below reproduces the
visual diagnostics plots discussed in Chapter 6. The resulting plots should look similar
to Figure 7.3.

par(mfrow = c(1, 3))

Plot 1, histogram:

hist(residuals(sense_all), col = 'skyblue2')

Plot 2, Q-Q plot:

qqnorm(residuals(sense_all))
qqline(residuals(sense_all))

Plot 3, residual plot:

plot(fitted(sense_all), residuals(sense_all))

15034-2313q-3pass-r02.indd 129 10/3/2019 5:51:46 PM

130  Categorical Predictors

The model seems to conform fairly well to the normality assumption: the distribu-
tion of residuals looks very normal in the histogram, and the Q-Q plot also indicates
a good fit with the normal distribution (you will often find that the residuals fan out
a tiny bit from the Q-Q line for more extreme values). However, the residual plot
might look weird to you. Are these residuals consistent with the constant variance
assumption? And where do these vertical stripes come from? The stripes are there
because the sense_all predicts five fitted values, one for each category. This
is why there are no in-between values. What matters for the assessment of homo-
scedasticity (‘equal variance’) is that the residuals in Figure 7.3c are about equally
spread out for each of the categories, which seems to be the case for this dataset.

7.10. � Other Coding Schemes
There are many more coding schemes not discussed in this book. For example, the
‘Helmert coding’ and ‘forward difference coding’ schemes may become useful when
you want to incorporate ordered categorical predictors into your model. Helmert cod-
ing compares the levels of a variable with the mean of the subsequent levels of that
variable. This coding scheme is implemented in R via the contr.helmert() func-
tion. For a factor with four levels, this coding system looks like this.

contr.helmert(4)

 [,1] [,2] [,3]
1 -1 -1 -1
2 1 -1 -1
3 0 2 -1
4 0 0 3

In the corresponding regression output, the first slope indicates the difference
between levels 1 and 2. The second slope indicates the difference between levels 1
and 2, compared to level 3. The third slope indicates the difference between levels 1,
2, and 3, compared to level 4. Thus, each consecutive level is compared to the mean

Figure 7.3. � (a) Histogram; (b) Q-Q plot; and (c) residual plot to assess the normality and
constant variance assumptions for the sense_all model

15034-2313q-3pass-r02.indd 130 10/3/2019 5:51:46 PM

Categorical Predictors  131

of all previous levels in an ordered sequence. This is useful, for example, when testing
ordered predictors such as education level (PhD > MA > BA, etc.).

The two coding schemes that form the focus of this chapter, treatment coding and
sum-coding, will suit most of your needs. When you report the results of a regression
model with categorical predictors, it’s important to mention what coding scheme you
used so that the reader can interpret any coefficient estimates you mention in the paper.
It’s good to be explicit about this, and I recommend doing this even when you use R’s
default coding system (treatment coding).

7.11. � Chapter Conclusions
This chapter covered how to incorporate categorical predictors into a regression
framework. This allows fitting models with both continuous and categorical predic-
tors. The only novelty compared to the continuous case is that you have to be careful
in interpreting the output of categorical models, keeping track of how categories are
converted into dummy codes. This chapter covered two coding schemes: treatment
coding and sum-coding.

7.12. � Exercises

7.12.1.  Plotting Categorical Differences

Using the senses tibble, create a boxplot that shows the valence for all the five
senses. Next, plot a density graph with geom_density(). Map the Modality
column onto the fill argument and increase the alpha to get transparent colors. What
happens if you add the following new layer to the plot?

+ facet_wrap(~Modality)

7.12.2. � Iconicity as a Function of Sensory Modality

Let’s assess the degree to which perceptual words differ in terms of iconicity as a
function of sensory modality, as explored in Winter et al. (2017) (see Chapter 2). The
following code loads in the Lynott and Connell (2009) modality ratings for adjectives
and our iconicity ratings. The two tibbles are then merged, and a subset of the columns
is extracted using select().

lyn <- read_csv('lynott_connell_2009_modality.csv')
icon <- read_csv('perry_winter_2017_iconicity.csv')

both <- left_join(lyn, icon)

both <- select(both, Word, DominantModality, Iconicity)

both

15034-2313q-3pass-r02.indd 131 10/3/2019 5:51:46 PM

132  Categorical Predictors
A tibble: 423 x 3
 Word DominantModality Iconicity
 <chr> <chr> <dbl>
 1 abrasive Haptic 1.31
 2 absorbent Visual 0.923
 3 aching Haptic 0.25
 4 acidic Gustatory 1
 5 acrid Olfactory 0.615
 6 adhesive Haptic 1.33
 7 alcoholic Gustatory 0.417
 8 alive Visual 1.38
 9 amber Visual 0
10 angular Visual 1.71
... with 413 more rows

Fit a linear model where Iconicity is modeled as a function of the categorical
predictor DominantModality. Interpret the output. What does the intercept repre-
sent? Can you use the coefficients to derive predictions for all five categories? Com-
pare your results against the descriptive means, for which you can use group_by()
and summarize().

15034-2313q-3pass-r02.indd 132 10/3/2019 5:51:46 PM

8.1. � Introduction
An interaction describes a situation where the influence of a predictor on the response
depends on another predictor. That is, interactions are about relationships between
predictors, and how two or more predictors together influence a response variable.
McElreath (2016: 120) provides an intuitive example of an interaction: imagine mod-
eling plant growth as a function of the two predictors ‘water use’ and ‘sun exposure’.
Neither of these predictors alone will have a great impact on plant growth. Only if
there is both water and sun will the plant grow. That is, the influence of the sun expo-
sure predictor critically depends on the water use predictor, and vice versa.

In the language sciences, interactions are ubiquitous. For example, in Winter and
Bergen (2012), we asked English speakers to read sentences that differed in descrip-
tions of distance, such as You are looking at the beer bottle right in front of you (near)
versus You are looking at the beer bottle in the distance (far). After having read one
of these two sentences, participants either saw a large image of a bottle (near) or a
small image (far). We measured the speed with which participants verified whether the
picture object was mentioned in the sentence. In our model, the two predictors were
‘sentence distance’ and ‘picture size’. Crucially, these predictors interacted with each
other: looking at a large image after reading a ‘near’ sentence was faster, and so was
looking at a small image after reading a ‘far’ sentence. In contrast, mismatching pairs
of predictor levels (near sentence/small image; far sentence/large image) resulted in
slower response times. This is an example of an interaction, because it is specific com-
binations of the predictor levels that matter.

The following shows the equation of a model with two predictor variables, x1 and
x2 (without error term):

y b b x b x= + +0 1 1 2 2 � (E8.1)

To incorporate an interaction, the two predictors are multiplied by each other
(*).x x1 2 Regression will then estimate the corresponding slope for this new predic-
tor, b3. The numerical value of this slope describes the strength of this ‘multiplicative
effect’. When b3 is estimated to be close to 0, the interaction is weak. The further way
b3 is from 0, the stronger the interaction effect.

y b b x b x b x x= + + +0 1 1 2 2 3 1 2(*) � (E8.2)

8	 Interactions and Nonlinear
Effects

15034-2313q-3pass-r02.indd 133 10/3/2019 5:51:50 PM

134  Interactions and Nonlinear Effects

In psychology, interactions are sometimes called ‘moderator variables’ because they
‘moderate’ the effects of other predictors. You can think of it this way: by multiplying
the two predictors with each other, you effectively ‘interlock’ them, and the coefficient
b3 specifies how the two predictors are interlocked.

This will become clearer with examples. This chapter introduces you to differ-
ent types of interactions. First, interactions between a categorical and a continuous
variable. Then interactions between two categorical variables. Finally, interactions
between two continuous variables. The final section of this chapter considers another
‘multiplicative’ type of model: polynomial regression.

However, before you embark on the journey that is this chapter, I want to prepare
for what’s coming up. Interpreting interactions is very hard and takes time. There’s
also going to be a bit more arithmetic than in previous chapters. If you are new to
regression modeling, this chapter may be worth reading more than once.

8.2. � Categorical * Continuous Interactions
Let us revisit the iconicity model from Chapter 6. To remind you: iconicity describes
the degree to which a word form resembles the meaning of a word. For example, ono-
matopoeic words such as bang and beep are iconic because they imitate the sounds
these words describe. One outcome of the analysis presented in Chapter 6 was that
words with more sensory content were on average more iconic than words with less
sensory content (see Winter et al., 2017).

Figure 8.1 shows the relationship between iconicity and sensory experience ratings
(SER) separately for nouns and verbs. The lines inside the plots show the linear model
fits of simple bivariate regression models (Iconicity ~ SER), one for nouns and
one for verbs. You can easily see that the relationship between sensory experience and
iconicity is stronger for verbs than for nouns. The respective linear regression models
estimate the SER slopes to be +0.63 for verbs and +0.12 for nouns. The fact that SER
has a different effect on iconicity depending on part of speech hints at an interaction, but
you cannot simply compare the slopes of separate models (for a nice discussion of this,
see Vasishth & Nicenboim, 2016). Instead, the interaction should be modeled explicitly.

Figure 8.1. � The relationship between sensory experience ratings and iconicity for (a)
nouns and (b) verbs; notice the steeper slope for verbs; the shaded 95% confi-
dence regions will be explained in Chapters 9–11

15034-2313q-3pass-r02.indd 134 10/3/2019 5:51:50 PM

Interactions and Nonlinear Effects  135

First, begin by loading the data from Chapter 5 into R.

library(tidyverse)
library(broom)

icon <- read_csv('perry_winter_2017_iconicity.csv')

icon

A tibble: 3,001 x 8
 Word POS SER CorteseImag Conc Syst Freq
 <chr> <chr> <dbl> <dbl> <dbl> <dbl> <int>
 1 a Grammati… NA NA 1.46 NA 1.04e6
 2 abide Verb NA NA 1.68 NA 1.38e2
 3 able Adjective 1.73 NA 2.38 NA 8.15e3
 4 about Grammati… 1.2 NA 1.77 NA 1.85e5
 5 above Grammati… 2.91 NA 3.33 NA 2.49e3
 6 abrasive Adjective NA NA 3.03 NA 2.30e1
 7 absorbe… Adjective NA NA 3.1 NA 8.00e0
 8 academy Noun NA NA 4.29 NA 6.33e2
 9 accident Noun NA NA 3.26 NA 4.15e3
10 accordi… Noun NA NA 4.86 NA 6.70e1
... with 2,991 more rows, and 1 more variable:
Iconicity <dbl>

Most columns are irrelevant for the current analysis. All you need to proceed is the
columns for Iconicity (response), SER (predictor 1), and POS (predictor 2).

Let’s use unique() to have a look at the names of the different lexical categories
(‘parts of speech’).

unique(icon$POS)

[1] "Grammatical" "Verb" "Adjective" "Noun"
[5] "Interjection" "Name" "Adverb" NA

Use table()to check how many words there are per parts of speech. If you wrap
sort() around the table, the categories will be sorted in terms of ascending counts.
Notice that there are many more nouns than verbs.

sort(table(icon$POS))

 Name Interjection Adverb Grammatical
 15 17 39 80
 Adjective Verb Noun
 535 557 1704

Let’s filter the tibble so that it includes only nouns and verbs.

15034-2313q-3pass-r02.indd 135 10/3/2019 5:51:50 PM

136  Interactions and Nonlinear Effects

NV <- filter(icon, POS %in% c('Noun', 'Verb'))

Check that this has produced the desired effect:

table(NV$POS)

Noun Verb
1704 557

The table() command shows that there are now only nouns and verbs in this
dataset.

For pedagogical reasons, the first model considered here regresses iconicity on SER
and part of speech without including an interaction term.

NV_mdl <- lm(Iconicity ~ SER + POS, data = NV)

tidy(NV_mdl) %>% select(term, estimate)

 term estimate
1 (Intercept) -0.1193515
2 SER 0.2331949
3 POSVerb 0.6015939

As always, you should spend considerable time interpreting the coefficients. First,
the intercept is the prediction for nouns with 0 sensory experience ratings. You know
that nouns are in the intercept (reference level) because it says ‘POSVerb’ in the out-
put, and because ‘n’ comes before ‘v’ in the alphabet. The positive coefficient (+0.60)
thus shows that verbs are more iconic than nouns.

Next, the sensory experience slope (SER) is estimated to be +0.23, which indi-
cates a positive relationship between iconicity and sensory experience. Remem-
ber that the SER slope of the noun model discussed was +0.12; for verbs, the
slope was +0.63. The slope +0.23 of this model is in between the slopes for nouns
and verbs, and it is closer to the nouns because there are more nouns than verbs.
This model does ‘know’ that the SER slope could be different for nouns and
verbs, and in ignoring this interaction the model ends up mischaracterizing the
SER slope for both lexical categories.

Figure 8.2 visualizes the NV_mdl model. The white square is the intercept at
SER = 0. The intercept is at the noun category, and verbs (dashed line) have higher
iconicity than nouns. As the lines are parallel, this is regardless of which value of SER
you consider.

Figure 8.3a shows a more complex model which includes an interaction term. The
most striking difference to Figure 8.2 is the fact that the two lines are not parallel
anymore. This means that sensory experience is estimated to have different effects
on iconicity for nouns and verbs. Likewise, it means that the degree to which nouns
and verb differ from each other in terms of iconicity also depends on what SER value
one considers. Thus, you cannot interpret each of the predictors in isolation anymore.
The two predictors are conditioned on each other and have to be interpreted together.

15034-2313q-3pass-r02.indd 136 10/3/2019 5:51:50 PM

Interactions and Nonlinear Effects  137

To fit the model shown in Figure 8.3, you need to include an interaction term in your
model formula, which is done via the asterisk ‘*’.1

1	 There are two alternative ways of specifying interactions in model formulas:
lm(iconicity ~ SER * POS, data = NV)
Same as:
lm(iconicity ~ SER + POS + SER:POS, data = NV)
The latter effectively ‘spells out’ the more compressed ‘SER * POS’ notation and highlights that

the interaction involves a third term in the model, SER:POS.

Figure 8.2. � Iconicity as a function of sensory experience ratings; the regression lines represent
a model that does not include an interaction term ‘Iconicity ~ SER + POS’;
the white square represents the intercept of this model; to increase clarity, only
a random 25% of the data points are shown for each group

Figure 8.3. � (a) The plot corresponding to the model ‘Iconicity ~ SER * POS’; (b)
the plot corresponding to the model ‘Iconicity ~ SER_c * POS’ with
a centered sensory experience predictor; notice the shift in the intercept (white
square), which means that the verb-noun difference is evaluated elsewhere;
graph inspired by Schielzeth (2010)

15034-2313q-3pass-r02.indd 137 10/3/2019 5:51:50 PM

138  Interactions and Nonlinear Effects

NV_int_mdl <- lm(Iconicity ~ SER * POS, data = NV)

tidy(NV_int_mdl) %>% select(term, estimate)

 term estimate
1 (Intercept) 0.2739423
2 SER 0.1181651
3 POSVerb -0.9554158
4 SER:POSVerb 0.5083802

As always, devote time to interpreting these coefficients. When there are interac-
tions in your model, you need to devote extra time.

First, let’s look at how many coefficients there are altogether: there are two coeffi-
cients for each predictor (SER and POSVerb), as well as a separate coefficient for the
interaction (SER:POSVerb). Second, remind yourself about what’s in the intercept.
As was the case in the model before, the intercept is the prediction for nouns with 0
SER.

Crucially, now that the lines are not parallel anymore, the meaning of the SER
and POSVerb coefficients have changed. The SER slope is now the slope of sen-
sory experience only for the nouns. A common thinking trap is to think that the SER
coefficient is the average SER slope, which is not the case. In fact, notice that the
slope for SER is the same as was the case for the noun-only model discussed above
(+0.12).

Likewise, the POSVerb effect is the noun-verb difference only for words with 0
sensory experience. Compare Figure 8.3a to the coefficient table and notice how, at the
intercept (white square), nouns are actually more iconic than verbs (POSVerb = –0.96).
However, don’t be misled to suggest that this means that nouns are overall more iconic
than verbs—if at all, the opposite is true. It all depends on where along the SER
predictor you evaluate the noun-verb difference. Figure 8.3 highlights the difference
that’s seen in the coefficient table as the black line that extends from the white square
(intercept) towards the black circle. If you mentally slide these two points along the
two regression lines, you notice how the noun-verb difference changes and in fact
even reverses sign.

How can you interpret the coefficient of the interaction term SER:POSVerb? In
this context, it is appropriate to think of this coefficient as a ‘slope adjustment term’.
The coefficient is +0.51, which means that the SER slope is steeper for verbs. Adding
the +0.51 interaction term to the slope of the nouns +0.12 yields the slope of the verbs,
which is +0.63. Put differently, the verbs get an additional boost with respect to the
SER effect.

The interpretation of models with interactions is often greatly facilitated when con-
tinuous variables are centered. Remember from Chapter 5 that centering a continuous
predictor sets the intercept to the mean. If you center sensory experience ratings, you
put the intercept to the center of mass of the data points, as shown in Figure 8.3b.
Notice how for this central SER value, verbs are actually more iconic than nouns. This
is arguably a more adequate characterization of the noun-verb difference than evaluat-
ing this difference at a sensory experience rating of 0, which doesn’t even exist in the
data because the scale started at 1. Let’s recompute the model with a centered SER
variable.

15034-2313q-3pass-r02.indd 138 10/3/2019 5:51:50 PM

Interactions and Nonlinear Effects  139

Center SER:

NV <- mutate(NV, SER_c = SER - mean(SER, na.rm = TRUE))

Fit model with centered predictor:

NV_int_mdl_c <- lm(Iconicity ~ SER_c * POS, data = NV)

Check coefficients:

tidy(NV_int_mdl_c) %>% select(term, estimate)

 term estimate
1 (Intercept) 0.6642298
2 SER_c 0.1181651
3 POSVerb 0.7237133
4 SER_c:POSVerb 0.5083802

Centering sensory experience ratings has reversed the sign of the POSVerb coef-
ficient, which is now +0.72. This now has a more meaningful interpretation: it is the
difference between nouns and verbs for words with average sensory experience rat-
ings, rather than the difference between nouns and verbs for some arbitrary 0. And it
turns out that, for words with average sensory experience, verbs are more iconic than
nouns. You have changed the representation of the model so that the POSVerb coef-
ficient is more interpretable. When dealing with interactions and you are uncertain
about whether you should or should not center, I recommend the motto ‘If in doubt,
center’.

8.3. � Categorical * Categorical Interactions
This section explores interactions between two categorical variables in the context of
an experimental study conducted by Winter and Matlock (2013). This study followed
a 2 x 2 (‘two by two’) experimental design, which means there were two categorical
predictors, each of which had two levels. We were interested in people’s associations
between conceptual similarity and physical proximity as revealed through such meta-
phorical expressions as Their views on this issue are far apart (see also Casasanto,
2008; Boot & Pecher, 2010). In one of the experiments, participants were asked to
read the following text:

The city of Swaneplam has just finished its annual budget, and so has the city of
Scaneplave. Swaneplam decided to invest more in education and public health-
care this year. It will also contribute generously to its public transportation system.
Similarly, Scaneplave will increase funding for education and healthcare. Also like
Swaneplam, Scaneplave will dramatically expand funds for transportation this year.

Notice that the text repeatedly emphasizes the similarity between the two cities.
In another condition of our experiment, dissimilarities between the two cities were
highlighted. After reading either the similar or different text, participants were asked

15034-2313q-3pass-r02.indd 139 10/3/2019 5:51:50 PM

140  Interactions and Nonlinear Effects

to draw two Xs on a map of an island. The distance between the two Xs was our main
response variable. We reasoned that when the cities were described as being similar,
participants would place the cities closer to each other on the map. In addition to this
manipulation of what we call ‘semantic similarity’, we added a ‘phonological simi-
larity’ condition. In the phonologically similar condition, the names of the two cities
were Swaneplam and Scaneplave; in the phonologically different condition, the names
of the two cities sounded more different from each other: Swaneplam and Mouchdalt.

Given our research questions, we want to model the distance between the two cities
as a function of phonological similarity and semantic similarity. Moreover, it is plau-
sible that these two predictors interact. To assess this, let’s start by loading in the data
into your current R session.

sim <- read_csv('winter_matlock_2013_similarity.csv')

sim

A tibble: 364 x 3
 Sem Phon Distance
 <chr> <chr> <int>
 1 Different Similar 76
 2 Different Different 110
 3 Similar Similar 214
 4 Different Different 41
 5 Different Different 78
 6 Different Similar 87
 7 Similar Different 49
 8 Different Similar 72
 9 Similar Different 135
10 Different Similar 78
... with 354 more rows

Each row in this tibble represents data from one participant. The experiment was
entirely ‘between-participants’, that is, each participant was exposed to just one condi-
tion. The Sem and Phon columns contain information about semantic similarity and
phonological similarity, which are the predictors. The Distance column contains
the response, the distance between the two cities measured in millimeters.

Let us use count() to check the number of data points per condition.

sim %>% count(Phon, Sem)

A tibble: 4 x 3
Groups: Phon, Sem [4]
 Phon Sem n
 <chr> <chr> <int>
1 Different Different 91
2 Different Similar 86
3 Similar Different 97
4 Similar Similar 90

15034-2313q-3pass-r02.indd 140 10/3/2019 5:51:50 PM

Interactions and Nonlinear Effects  141

Finally, what about the Distance values? I happen to know that there is at least
one missing value, which can be assessed as follows using the is.na() function (see
Chapter 2.6). The result is a logical vector containing TRUE values (for NAs) and FALSE
values for complete cases. When the sum() function is used on a logical vector, TRUE
values are treated as 1s, and FALSE values as 0s.

sum(is.na(sim$Distance))

[1] 1

Thus, there is only one missing value. Either one of the following two filter()
commands exclude this data point.

sim <- filter(sim, !is.na(Distance))

Same as:

sim <- filter(sim, complete.cases(Distance))

Let’s verify that the new tibble has indeed one row less:

nrow(sim)

[1] 363

Yes. To get a feel for the Distance measure, compute the range.

range(sim$Distance)

[1] 3 214

  So, participants drew the cities anywhere from 3mm to 214mm apart from each other.
Let’s fit the model, first without any interactions:

sim_mdl <- lm(Distance ~ Phon + Sem, data = sim)

tidy(sim_mdl) %>% select(term, estimate)

 term estimate
1 (Intercept) 79.555653
2 PhonSimilar 5.794773
3 SemSimilar -10.183661

Because ‘d’ comes before ‘s’ in the alphabet, R will assign the reference level to
‘Different’ for both predictors. This results in the slopes expressing the change
from ‘Different’ to ‘Similar’. As always, it’s good to ask yourself what’s in
the intercept. Here, the intercept represents the estimated distance (79.6mm) for
the phonologically different and semantically different condition (i.e., when both
predictors are 0). Correspondingly, the two coefficients PhonSimilar and

15034-2313q-3pass-r02.indd 141 10/3/2019 5:51:50 PM

142  Interactions and Nonlinear Effects

SemSimilar represent the change with respect to this reference level. Because
there are no interactions in this model, each of these differences can be considered
in isolation. The model predicts distance to decrease by 10.2mm for the semantically
similar condition. It predicts distance to increase by 5.8mm for the phonologically
similar condition.

Now, fit a model with the interaction term:

sim_mdl_int <- lm(Distance ~ Phon * Sem, data = sim)

tidy(sim_mdl_int) %>% select(term, estimate)

 term estimate
1 (Intercept) 78.400000
2 PhonSimilar 8.022680
3 SemSimilar -7.818605
4 PhonSimilar:SemSimilar -4.592965

Again, the presence of an interaction should invite you to slow down and think
closely about the meaning of each coefficient. It is absolutely essential that you
remind yourself that you cannot interpret the effects of the two predictors in isolation
anymore.

First, what’s in the intercept? Well, you haven’t changed the reference levels, so
the intercept is still the phonologically different and semantically different condition.
Next, remember that the PhonSimilar and SemSimilar coefficients are with
respect to this intercept. However, because there now is an interaction in the model,
the PhonSimilar coefficient (+8mm) is not the average effect of phonological
similarity anymore. Instead, PhonSimilar is the difference between the phonologi-
cally similar and different conditions for semantically different words only. Likewise,
the SemSimilar coefficient describes the effect of semantic similarity for phono-
logically different words only. The PhonSimilar and SemSimilar coefficients in
the above table are called ‘simple effects’, a term used to describe the influence of one
predictor for a specific level of the other predictor. Usually, researchers are interested
in ‘main effects’, which is the average effect of one predictor, regardless of the levels
of the other predictor. Misinterpreting simple effects as main effects is a huge issue in
linguistics (see also Levy, 2018).

What about the interaction? The coefficient of the PhonSimilar:
SemSimilar term is –4.6mm. This represents the change that is applied only to the
phonologically similar and semantically similar cell. When dealing with interactions
in a 2 x 2 design, I find it incredibly useful to draw a 2 x 2 table and fill in the coeffi-
cient estimates by hand. Doing this makes some things immediately apparent, so let’s
have a look at Table 8.1. First, notice that all cells include the intercept. Next, notice
that the PhonSimilar coefficient (+8.0) is applied to the entire column that is
‘phonologically similar’, and the same goes for the SemSimilar coefficient (–7.8),
which is applied to the entire ‘semantically similar’ row. However, these are not the
average row-wise or column-wise differences, as one also has to include the interac-
tion term (highlighted in bold) in calculating these averages. The table margins show
row-wise and column-wise averages. This reveals that the average effect of semantic
similarity is actually +10.1, not +8.0 as in the coefficient table above. Similarly, the

15034-2313q-3pass-r02.indd 142 10/3/2019 5:51:50 PM

Interactions and Nonlinear Effects  143

Table 8.1. � Coefficients of the model with interaction term; the table margins show the row-
wise and column-wise averages

Phonologically
different

Phonologically
similar

Semantically different 78.4 78.4 + 8.0 M = 82.4
Semantically similar 78.4 + (−7.8) 78.4 + 8.0 + (−7.8)+(−4.6) M = 72.3

column M = 74.5 column M = 80.2

average phonological similarity effect is –5.7 once the interaction has been taken into
account, not –7.8.

If you are unsure in doing this arithmetic yourself, use predict() instead.
Remember that the first step of using predict()is to create a dataset for which pre-
dictions should be generated. The code below defines two vectors: one Phon with the
phonological conditions, one Sem with the semantic conditions. However, you need to
make sure that you get all combinations of ‘similar’ and ‘different’ values across these
two conditions. To do this, the rep() function comes in handy. It repeats a vector
(hence the name). If you specify the argument each = 2, each element of a vector
will be repeated. If you specify the argument times = 2, the entire vector will be
repeated. Thus, the difference between these two arguments results in a different order
in which things are repeated. For the present purposes, this is useful because it allows
creating all condition combinations.

Create 'different, different, similar, similar':

Phon <- rep(c('Different', 'Similar'), each = 2)

Phon

[1] "Different" "Different" "Similar" "Similar"

Create 'different, similar, different, similar':

Sem <- rep(c('Different', 'Similar'), times = 2)

Sem

[1] "Different" "Similar" "Different" "Similar"

Once you have these two vectors, put them both into a tibble.

newdata <- tibble(Phon, Sem)

newdata

A tibble: 4 x 2
 Phon Sem

15034-2313q-3pass-r02.indd 143 10/3/2019 5:51:50 PM

144  Interactions and Nonlinear Effects
 <chr> <chr>
1 Different Different
2 Different Similar
3 Similar Different
4 Similar Similar

This tibble has two columns, one for each of the experimental manipulations.
Together, the four rows exhaust the possible combinations of conditions. This tibble
is then supplied to the predict() function, together with the corresponding model
sim_mdl_int.

Append predictions to tibble:

newdata$fit <- predict(sim_mdl_int, newdata)

newdata

A tibble: 4 x 3
 Phon Sem fit
 <chr> <chr> <dbl>
1 Different Different 78.4
2 Different Similar 70.6
3 Similar Different 86.4
4 Similar Similar 74.0

These predictions can then be used to compute averages. For example, what is
the average difference between the semantically similar and semantically different
conditions?

newdata %>% group_by(Sem) %>%
 summarize(distM = mean(fit))

A tibble: 2 x 2
 Sem distM
 <chr> <dbl>
1 Different 82.4
2 Similar 72.3

Thus, the model predicts that, in the semantically similar condition, participants
drew the cities 10mm closer to each other.

The other strategy to aid in the interpretation of main effects in the presence of
interactions is to change the coding scheme from treatment coding (R’s default)
to sum coding. Remember that treatment coding assigns the values 0 and 1 to cat-
egories, whereas sum coding uses –1 and +1 (see Chapter 7). Conceptually, you
can think of sum coding here as ‘centering’ your categorical predictors. The most
important feature of sum coding for our purposes is that 0 is not any one of the
categories anymore, so that the changes are expressed as differences to that spe-
cific category. Instead, sum codes have 0 halfway in between the two categories.
This is best seen in action. The following code uses mutate() to define two new

15034-2313q-3pass-r02.indd 144 10/3/2019 5:51:50 PM

Interactions and Nonlinear Effects  145

columns with factor versions of the condition variables, Phon_sum and Sem_sum.
After this, the coding scheme of these factor vectors is changed to sum coding fac-
tor vectors is changed to sum coding factor vectors is changed to sum coding via
contr.sum().

Convert predictors to factors:

sim <- mutate(sim,
 Phon_sum = factor(Phon),
 Sem_sum = factor(Sem))

Change contrast coding scheme to sum coding:

contrasts(sim$Phon_sum) <- contr.sum(2)
contrasts(sim$Sem_sum) <- contr.sum(2)

Now, refit the model with the new sum-coded factor variables:

Refit model with sum-coded predictors:

sum_mdl <- lm(Distance ~ Phon_sum * Sem_sum, data = sim)

tidy(sum_mdl) %>% select(term, estimate)

 term estimate
1 (Intercept) 77.353797
2 Phon_sum1 -2.863099
3 Sem_sum1 5.057543
4 Phon_sum1:Sem_sum1 -1.148241

What’s the meaning of the Sem_sum1 coefficient? This is half the difference between
the two semantic conditions. Multiplying this by 2 yields about 10mm, which is the
average difference between semantically different and semantically similar drawings.
Why is this only half the average difference? This has to do with the fact that, in sum
coding, changing from one category (–1) to another (+1) is a bigger change, namely
2 rather than 1 (as is the case with treatment coding). See Chapter 7 for a reminder.
Either way, what is important to us is that, once the categorical predictors have been
sum-coded, the coefficient table lists ‘main effects’ rather than ‘simple effects’.2

What’s often confusing about sum coding is the sign of the coefficient. First of all,
I happily admit that for getting a quick grasp of what’s going on in a sum-coded model
I ignore the sign of the main effects. This can be done because if everything ‘starts in
the middle’ it doesn’t matter whether you’re moving ‘up’ or ‘down’ by half a mean
difference. In my own practice, I mostly use treatment coding, because I find it easier
to deal with the arithmetic (since terms drop out when multiplied by 0). I only move

2	 Given that all four cells of the design contain approximately the same amount of data, the intercept
is now also approximately the grand mean (the overall mean of the response), which has a straight-
forward interpretation in this case: it is the average distance between the cities.

15034-2313q-3pass-r02.indd 145 10/3/2019 5:51:50 PM

146  Interactions and Nonlinear Effects

to sum coding when I want to report main effects in a paper. As long as you know how
to interpret things, you may use either one of the two coding schemes—whatever is
easiest for you to wrap your head around. That said, it is important to be specific about
the coding scheme in the write-up your results—only this way will your audience be
able to interpret the coefficients appropriately. If you are worried about interpreting
coding schemes (which takes time and practice), you always have predict() at
your disposal.

8.4. � Continuous * Continuous Interactions
The final case to consider is an interaction between two continuous predictors. For this,
you are going to retrace the first steps of an analysis performed by Sidhu and Pexman
(2018). These researchers looked at the effect of sensory experience on iconicity (see
also Chapter 6). However, they additionally considered the role of what psycholinguists
call ‘semantic neighborhood density’. This term describes the idea that there are certain
regions in your mental lexicon that are quite ‘crowded’ or ‘dense’, with lots of words
that are connected to each other by virtue of having similar meanings. It has been pro-
posed that iconicity may lead to confusion, because, with many iconic forms, similar
meanings will also sound similar (Gasser, 2004; Christiansen & Chater, 2016). Sidhu
and Pexman (2018) reasoned that language should be biased against iconicity specifi-
cally in semantically dense neighborhoods, where there is more room for confusion.
In sparse neighborhoods, iconicity is not as dangerous, as there is less opportunity to
confuse concepts.

Let’s load the data from Sidhu and Pexman (2018) into your current R session. In
line with the snazzy title of their paper (advance-published in 2017), ‘Lonely sensa-
tional icons’, let’s call the tibble lonely:

lonely <- read_csv('sidhu&pexman_2017_iconicity.csv')

lonely

A tibble: 1,389 x 4
 Word SER ARC Iconicity
 <chr> <dbl> <dbl> <dbl>
 1 one 1.55 0.702 1.85
 2 him 2.55 0.689 0.583
 3 she 1.60 0.687 0.714
 4 me 2.33 0.664 0.600
 5 he 1.40 0.694 1.06
 6 mine 2.08 0.641 1.50
 7 near 2.10 0.674 0.538
 8 spite 2.91 0.625 2.86
 9 few 1.55 0.697 2.50
10 none 1.73 0.661 0.833
... with 1,379 more rows

15034-2313q-3pass-r02.indd 146 10/3/2019 5:51:50 PM

Interactions and Nonlinear Effects  147

The tibble contains four columns. The Word, SER, and Iconicity columns are
already familiar to you from this chapter and Chapter 6. The ARC column stands for
‘average radius of co-occurrence’. I won’t go into detail about how this measure is
computed—all you need to know is that this is a measure of semantic neighborhood
density taken from Shaoul and Westbury (2010). Small ARC values indicate sparse
semantic neighborhoods (less potential for confusion); large ARC values indicate
dense neighborhoods (more potential for confusion). Given that iconicity can lead to
confusion, words associated with large ARC values (in dense neighborhoods) should
be less iconic.

Sidhu and Pexman (2018) decided to exclude words with low iconicity ratings.3

lonely <- filter(lonely, Iconicity >= 0)

Let us fit a model with SER and ARC as predictors, including their interaction.

lonely_mdl <- lm(Iconicity ~ SER * ARC, data = lonely)

tidy(lonely_mdl) %>% select(term, estimate)

 term estimate
1 (Intercept) 1.3601014
2 SER 0.3612026
3 ARC -0.7929281
4 SER:ARC -0.5255308

It is important to remember that each coefficient is shown for 0 of the other vari-
ables. The intercept is the predicted iconicity rating of a word with 0 sensory expe-
rience and 0 semantic neighborhood density (ARC). The slope of the ARC effect
(–0.79) is shown for a sensory experience rating of 0. Likewise, the slope of the SER
effect is shown for an ARC of 0.

This model is hard to interpret. First, the fact that the continuous predictors aren’t
centered means that the SER and ARC effects are reported for some arbitrary 0. It
would be much nicer to report the ARC effect for words with average sensory experi-
ence and, likewise, to report the SER effect for words with average semantic neigh-
borhood density. A second interpretational difficulty arises from the fact that the
magnitude of the SER and ARC slopes are difficult to compare as each variable has
a different metric. That is, a one-unit change is a different step-size for each variable.
Let’s standardize both predictors (remember from Chapter 5 that standardized vari-
ables are also centered variables). The following mutate() command standardizes
both continuous predictors.

3	 The lower end of the iconicity rating scale may lack what is called ‘construct validity’. It is not
clear at all that ‘negative’ iconicity was interpreted consistently by our participants. In their
paper, Sidhu and Pexman (2018) used a more complex decision procedure to exclude words with
low iconicity.

15034-2313q-3pass-r02.indd 147 10/3/2019 5:51:50 PM

148  Interactions and Nonlinear Effects

Standardize continuous predictors:

lonely <- mutate(lonely,
 SER_z = (SER - mean(SER)) / sd(SER),
 ARC_z = (ARC - mean(ARC)) / sd(ARC))
lonely

A tibble: 1,389 x 6
 Word SER ARC Iconicity SER_z ARC_z
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 one 1.55 0.702 1.85 -1.74 1.16
 2 him 2.55 0.689 0.583 -0.745 1.06
 3 she 1.6 0.687 0.714 -1.69 1.05
 4 me 2.33 0.664 0.6 -0.956 0.871
 5 he 1.4 0.694 1.06 -1.89 1.10
 6 mine 2.08 0.641 1.5 -1.21 0.691
 7 near 2.1 0.674 0.538 -1.19 0.949
 8 spite 2.91 0.625 2.86 -0.382 0.567
 9 few 1.55 0.697 2.5 -1.74 1.13
10 none 1.73 0.661 0.833 -1.56 0.842
... with 1,379 more rows

Now that you have standardized predictors, refit the model. Let’s call this new
model lonely_mdl_z.

Fit model with standardized predictors:

lonely_mdl_z <- lm(�Iconicity ~ SER_z * ARC_z,
data = lonely)

tidy(lonely_mdl_z) %>% select(term, estimate)

 term estimate
1 (Intercept) 1.15564895
2 SER_z 0.07115308
3 ARC_z -0.32426472
4 SER_z:ARC_z -0.06775347

In this model, the ARC_z and SER_z coefficients are shown for each other’s respec-
tive averages, because the meaning of 0 has changed for both variables. After stand-
ardization, 0 SER is now the mean sensory experience rating; 0 ARC is now the mean
semantic neighborhood density. Let’s first interpret the ARC_z and SER_z coefficients
before dealing with the interaction. First, the slope of ARC is negative. This means that,
in denser neighborhoods (higher values of ARC), words are indeed less iconic, as pre-
dicted by Sidhu and Pexman (2018). In addition, the slope of SER_z is positive, con-
firming the idea that perceptual words are generally more iconic (Winter et al., 2017).

Moving on to the interaction, notice that the slope for this term is negative
(SER_z:ARC_z: –0.07). This can be read as follows: when SER_z and ARC_z both
increase, words are actually predicted to be less iconic. You can think of this as the

15034-2313q-3pass-r02.indd 148 10/3/2019 5:51:50 PM

Interactions and Nonlinear Effects  149

two effects cancelling each other out. It also helps to think about one variable at a
time, considering what the interaction means for that variable. For example: since the
SER_z slope is otherwise positive, but the interaction SER_z:ARC_z is negative,
the SER effect is diminished for high levels of the ARC variable. Put differently: in
dense semantic neighborhoods, there is less of a sensory experience effect.

Sidhu and Pexman (2018) opted to visualize the interaction via a partial plot where
the relationship between SER and iconicity is shown for representative values of
ARC. They chose –1.5 standard deviations and +1.5 standard deviations above the
ARC mean as the value to plot the Iconicity ~ SER relationship for. A version
of their plot is shown in Figure 8.4a.

Figure 8.4a shows that, for high levels of ARC (dense semantic neighborhoods),
the relationship between sensory experience and iconicity is basically nil (a flat line).
For semantic neighborhoods of intermediate density (ARC = 0), there is a very weak
positive relationship. The SER effect is more strongly positive in sparse semantic
neighborhoods (ARC = –1.5).

While Figure 8.4a is certainly useful, notice that it is a very partial representation of
what’s actually going on with this model. The figure shows only three lines for three
different arbitrarily chosen values of the ARC predictor. However, the model allows
you to make predictions for a whole series of ARC values.

Figure 8.4b shows a 3D version of the same relationship. This will take some time
to digest, so let me walk you through it. It’s important to realize that with two continu-
ous predictors you can span a two-dimensional grid of predictor values; for example,
ARC = 0, 1, 2, and then SER = 0, 1, 2 for every ARC value, and so on. Regression
makes predictions for all possible combinations of the predictor values. These predic-
tions can be represented in terms of height, extending upwards into a third dimension.
The resulting plane is called the regression plane.

To make sense of a 3D plot such as the one shown in Figure 8.4b, it is often useful
to consider each axis in isolation first. Focus your eye on the SER predictor. When
looking at what is labeled the ‘bottom edge’ in Figure 8.4b, there is not a particularly

Figure 8.4. � (a) Interaction plot showing the relationship between sensory experience and
for different levels of semantic neighborhood density (‘ARC’); (b) predicted
regression plane of the relationship between iconicity, ARC and SER; the
z-axis (height) shows iconicity (up = more iconic, down = more arbitrary); the
x and y axes show the continuous predictors, SER and ARC

15034-2313q-3pass-r02.indd 149 10/3/2019 5:51:53 PM

150  Interactions and Nonlinear Effects

strong relationship between SER and iconicity. This is the regression line for seman-
tically dense neighborhoods (higher ARC values). When looking at the ‘top edge’,
there is a positive relationship between SER and iconicity. Thus, depending on what
value ARC assumes, the slope of the SER effect changes. This actually means that the
regression plane seen in Figure 8.4b is twisted.

All of this 3D stuff is actually quite useful for conceptualizing interactions between
continuous predictors. Figure 8.5a shows that when there is no interaction, the plane is
straight. Figure 8.5b shows one of many possible interactions between two continuous
predictors. Notice that in this case the plane isn’t straight anymore, it’s twisted. This is the
conceptual analogue to what you’ve seen in the case of categorical * continuous interac-
tions, where parallel lines indicated the absence of an interaction, and non-parallel lines
indicated the presence of an interaction.

The particular interaction shown in Figure 8.5b is of an interesting nature. For low
values of predictor 2, there is a negative relationship between predictor 1 and the
response. For high values of predictor 2, there is a positive relationship between pre-
dictor 1 and the response. Thus, the slope of predictor 1 reverses sign as you move
along predictor 2. There are many situations in linguistics where the coefficient of a
continuous predictor reverses sign depending on another continuous predictor. For
example, in Perry et al. (2017), we found a positive relationship between iconicity
and word frequency for young children, but a negative relationship between iconicity
and word frequency for older children. Thus, the relationship between frequency and
iconicity was modulated by the continuous predictor age.

8.5.  Nonlinear Effects
In the context of talking about multiplicative effects, it also makes sense to talk about
situations in which you have to deal with nonlinear effects. What if the data does not

Figure 8.5. � (a) A straight regression plane without an interaction and (b) a twisted regres-
sion plane with an interaction; notice that (b) only shows one possible interac-
tion out of many possible interactions

15034-2313q-3pass-r02.indd 150 10/3/2019 5:51:53 PM

Interactions and Nonlinear Effects  151

follow a straight line? Like interactions, such nonlinearities can be modeled by multi-
plications of predictor variables.

In a paper that won them the Yelp Dataset Challenge Award, Vinson and Dale (2014)
looked at how the information density of messages is influenced by a language user’s
affective state, as operationalized through whether a restaurant’s review on the Yelp app
is overall positive, negative, or neutral. Vinson and Dale (2014) used several measures for
computing the information density of Yelp reviews. Here, we will only look at one of these
measures, the average conditional information (ACI), which quantifies how unexpected a
word is given the word that immediately preceded it. In information theory, ‘unexpected-
ness’ is a measure of how informative something is. Vinson and Dale (2014) correlated
this measure with the user’s rating of each review (Yelp uses a five-star system).

The dataset I make available to you is a small subset of the much larger analysis
conducted by Vinson and Dale (2014). Each of the 10,000 rows in this tibble rep-
resents one review. The across_uni_info column is the average ACI over the
entire review. Higher values indicate more informative reviews.

vinson_yelp <- read_csv('vinson_dale_2014_yelp.csv')

vinson_yelp

A tibble: 10,000 x 2
 stars across_uni_info
 <int> <dbl>
 1 2 9.20
 2 1 10.2
 3 4 9.31
 4 3 9.27
 5 3 9.34
 6 4 9.68
 7 4 9.79
 8 4 9.47
 9 3 10.6
10 5 9.23
... with 9,990 more rows

Let us compute averages of the information density measure as a function of
the Yelp review stars. This is achieved with the following code. In this pipeline,
the vinson_yelp tibble is first piped to the group_by() function, which groups
the tibble by stars. The grouping means that the following summarize() function
computes averages per review star. These averages (AUI_mean) are then plotted
against the review stars to yield Figure 8.6.

vinson_yelp %>% group_by(stars) %>%
 summarize(AUI_mean = mean(across_uni_info)) %>%
 ggplot(aes(x = stars, y = AUI_mean)) +
 geom_line(linetype = 2) +
 geom_point(size = 3) +
 theme_minimal()

15034-2313q-3pass-r02.indd 151 10/3/2019 5:51:53 PM

152  Interactions and Nonlinear Effects

The pattern shown in Figure 8.6 suggests that reviews are more informative if they
are less neutral. Or, to put it plainly, more strongly negative or more strongly positive
reviews contain more unpredictable words.

To model such a curve with regression, polynomial effects can be incorporated
into the model. In this case, visual inspection of the averages suggests that there is
a quadratic (‘parabolic’) effect. The parabola of a variable x is the function f(x) = x2,
which is just x multiplied by itself (x x*) . The following plot demonstrates this (see
Figure 8.7, left plot). The sequence of numbers -10:10 is stored in the vector x. This
vector is then multiplied by itself via power notation ^2.

x <- -10:10
plot(x, x ^ 2, type = 'b')

Similarly, multiplying a sequence of numbers three times by itself (x x x* *)
results in the characteristic S-shaped pattern of cubic curves (see Figure 8.7, right
plot).

x <- -10:10
plot(x, x ^ 3, type = 'b')

Figure 8.6. � Average information density as a function of restaurant review ratings (Yelp);
the analysis is based on a subset of the data from Vinson and Dale (2014)

15034-2313q-3pass-r02.indd 152 10/3/2019 5:51:54 PM

Interactions and Nonlinear Effects  153

The trick in polynomial regression is to enter a polynomially transformed version of a
predictor. For example, in E8.3, a quadratic version of the predictor x is entered into the
model. Regression then estimates a coefficient for this quadratic variable based on the
data. The size of the coefficient for this variable quantifies the degree to which the rela-
tionship between x and y is parabolic. In E8.3, the coefficient for the quadratic effect is β2
When β2 is estimated to be large and positive, the model will predict a U-shaped curve;
when β2 is estimated to be large and negative, the model will predict an inverted U-shaped
curve. The more β2 tends towards 0, the more everything falls on a straight line.

y x x� � �� � �0 1 2
2 � (E8.3)

In other words: you specify the polynomial form you predict (in this case, a quad-
ratic), and the data determines the coefficient estimates that your model predicts based
on this specification. If there is not actually a quadratic or cubic pattern in the data, the
corresponding coefficient estimates will be very small.

So, to do this for Vinson and Dale’s (2014) Yelp review data, center the star ratings
and create a squared version of this, which is just the star ratings variable multiplied
by itself.

Center and square star ratings:

vinson_yelp <- mutate(vinson_yelp,
 stars_c = stars - mean(stars),
 stars_c2 = stars_c ^ 2)

The model then includes the linear and the quadratic star ratings as predictors of
average information density.

yelp_mdl <- lm(across_uni_info ~ stars_c + stars_c2,
 data = vinson_yelp)

Figure 8.7.  Quadratic and cubic functions of x

15034-2313q-3pass-r02.indd 153 10/3/2019 5:51:55 PM

154  Interactions and Nonlinear Effects

tidy(yelp_mdl) %>% select(term:estimate)

 term estimate
1 (Intercept) 9.69128114
2 stars_c 0.04290790
3 stars_c2 0.03736348

There is a positive coefficient for the quadratic effect. To interpret this model, it’s
easiest to compute predictions. The following code uses the familiar predict()
function to compute the fitted values for each of the ratings.

Create tibble for predict():

yelp_preds <- tibble(stars_c =
 sort(unique(vinson_yelp$stars_c)))

Square star ratings:

yelp_preds <- mutate(yelp_preds, stars_c2 = stars_c ^ 2)

Append model fit:

yelp_preds$fit <- predict(yelp_mdl, yelp_preds)

yelp_preds

A tibble: 5 x 3
	 stars_c	 stars_c2	 fit
	 <dbl>	 <dbl>	 <dbl>
1	 -2.68	 7.21	 9.85
2	 -1.68	 2.84	 9.73
3	 -0.685	 0.469	 9.68
4	 0.315	 0.0992	 9.71
5	 1.32	 1.73	 9.81

Notice how the numbers in the fit column first become smaller, and then larger again.
Based on these fitted values, you can produce a plot of the predictions, which will look
almost exactly the same as Figure 8.6. The predictions follow a clear U-shaped pattern.

yelp_preds %>%
 ggplot(aes(x = stars_c, y = fit)) +
 geom_point(size = 3) +
 geom_line(linetype = 2) +
	 theme_minimal()

It is possible to add additional polynomials to model more complex curves. For exam-
ple, a model could take the form ‘y ~ x_1 + x_2 + x_3 + x_4’, where x_2
is the quadratic effect (x x*) , x_3 is the cubic effect (x x x* *) , x_4 is the quartic
effect (x x x x* * *) , and so on. Adding such ‘higher-order’ polynomials means that

15034-2313q-3pass-r02.indd 154 10/3/2019 5:51:57 PM

Interactions and Nonlinear Effects  155

increasingly wiggly curves can be modeled with increasing fidelity. However, be careful
with this approach, as higher-order polynomials are often difficult to interpret. Moreo-
ver, you need to keep in mind that polynomials are just mathematical objects, and espe-
cially higher-order polynomials may not relate in a meaningful fashion to any linguistic
theories. In my own practice, I very often model quadratic effects because these often
relate to specific theoretical mechanisms. For example, in memory research, there are
‘primacy effects’ and ‘recency effects’ which make people remember the beginning or
ends of lists better and result in a U-shaped curve of memorization performance across
the list. This could easily be modeled with a quadratically transformed version of a ‘list
position’ predictor. In Hassemer and Winter (2016) and Littlemore et al. (2018), we used
polynomials to capture the fact that some effects have plateaus for high values.

If you are purely interested in modeling nonlinear trajectories with high fidelity,
you may consider using generalized additive models (GAMs). These are an extension
of regression that are much less restricted than polynomial regression. A coverage of
GAMs is beyond the scope of this book, but the concepts learned here prepare you
well for fitting GAM models. Luckily, there is a wealth of tutorials on GAMs available
(Winter & Wieling, 2016; Sóskuthy, 2017; Wieling, 2018).

8.6. � Higher-Order Interactions
So far, this chapter has covered interactions between two variables. It’s also possible
to fit interactions between more than two variables. In some cases, this may be theo-
retically motivated. However, the interpretational problems inherent in models with
interactions become amplified for more complex interactions. Let’s say you had three
predictors, A, B, and C, which you entered into an interaction (A * B * C). In that
case, all three predictors cannot be interpreted in isolation anymore. Moreover, the
two-way interactions between each pair of the predictors (A:B, B:C, and A:C) is
modulated by the three-way interaction!

In some cases, three-way interactions may be theoretically motivated. Sometimes,
even four-way interactions make sense and may be predicted. However, in general, it’s
a good strategy to avoid fitting models with very complex interaction terms—espe-
cially if you are new to statistical modeling. Focus on those interactions for which
there is a clear theoretical rationale.

You can also use the model formulas strategically to limit the number of interac-
tions. Have a look at the following notation:

y ~ (A + B) * C

This model fits the two-way interactions between A and C, and between B and
C, but it doesn’t fit the three-way interaction, and it also doesn’t fit the interaction
between A and B.

In this context, it’s also good to remember that the star symbol ‘*’ is just a short-
hand, and that one can specify each individual interaction term separately using the
colon ‘:’. The model formula above corresponds to the following equivalent regres-
sion specification:

y ~ A + B + A:C + B:C

15034-2313q-3pass-r02.indd 155 10/3/2019 5:51:58 PM

156  Interactions and Nonlinear Effects

8.7. � Chapter Conclusions
This chapter has introduced you to interactions, which are estimated via the coef-
ficients of multiplicative predictors. You can think of an interaction as a situation in
which two predictors are ‘interlocked’, having a conjoined influence on the response.
If your model features an interaction, you cannot interpret the predictors that par-
ticipate in the interaction in isolation anymore. In the presence of an interaction, the
effects of one predictor depend on another predictor.

I have walked you through three types of interactions: continuous * categorical,
categorical * categorical, and continuous * continuous. Throughout these examples,
you have seen that recoding your predictor (such as centering a continuous variable
or sum-coding a categorical predictor) may aid interpretation. In addition, you should
extensively use the predict() function to understand your model, and you should
compare your model coefficients to visualizations of the data, or to descriptive averages.

Finally, I have shown how to fit polynomials to model nonlinear data. Altogether,
this chapter has massively increased the expressive potential of your statistical mode-
ling, allowing you to model more complex datasets, as well as more complex theories.

8.8. � Exercises

8.8.1. � Exercise 1: Interactions with Multi-Level
Categorical Predictors

Go back to the step where you filtered the icon tibble to create NV, the tibble that
only included the data for nouns and verbs. Create a new subset that also includes
adjectives, so that the POS column now has three categories. Refit the model with the
part-of-speech interaction. How many interaction coefficients are there now?

8.8.2. � Exercise 2: Hand-Coding Categorical Predictors
with Interactions

To reinforce coding schemes, recreate the dummy codes for the similarity model dis-
cussed in this chapter. Doing this by hand is generally not recommended, since R does
it anyway, but it’s useful for pedagogical reasons as it helps to reinforce what’s going
on ‘behind the scenes’ when R fits an interaction between two categorical variables.
The following code uses the ifelse() function to create two new columns. These
are then multiplied to create the interaction term int01.

sim <- mutate(sim,
 phon01 = ifelse(Phon == 'Similar', 1, 0),
 sem01 = ifelse(Sem == 'Similar', 1, 0),
 int01 = phon01 * sem01)

tidy(lm(Distance ~ phon01 + sem01 + int01, data = sim))
output not shown

Compare the resulting output to the treatment-coded model discussed in the chapter.

15034-2313q-3pass-r02.indd 156 10/3/2019 5:51:58 PM

9.1. � Introduction
This chapter is the first one to explicitly deal with inferential statistics. As briefly
mentioned in Chapter 3, when doing inferential statistics, sample estimates are used
to estimate and make inferences about population parameters. Most of the time,
researchers work with limited samples. Each sample is a ‘snapshot’ of the popula-
tion, and randomly drawing different samples from the population means that each
sample yields slightly different estimates. Thus, the process of making inferences on
the population is always uncertain. Gelman and Hill (2007: 457) say that uncertainty
“reflects lack of complete knowledge about a parameter". Inferential statistics quanti-
fies this uncertainty so that you can express how confident you are in making claims
about the population.

Figure 9.1 is a schematization of the inferential process. Chapter 3 already talked
about the fact that the sample mean x is an estimate of the population mean μ, and
that the sample standard deviation s is an estimate of the population standard devia-
tion σ . In the context of regression, each regression coefficient b is an estimate of the
corresponding regression coefficient in the population, β (pronounced ‘beta’).

What counts as a ‘population’ in linguistics is, in fact, a non-trivial question. In
sociolinguistic and psycholinguistic studies, one population of interest is often the set
of all speakers of a particular linguistic variety. For example, you may have collected
speech data from a sample of 90 native speakers of the ‘Brummie’ accent, a variety
of British English spoken in the city of Birmingham (UK). This sample of 90 speak-
ers vastly undersamples the population of interest (Birmingham is the second biggest
city in the UK). Nevertheless, you want to assess how likely it is that our results say
something about all Brummie speakers.

For many linguistic applications, the population of interest is not a population of
speakers, but a population of linguistic items. In fact, in most of my own work (corpus
analysis and lexical statistics) I sample primarily from populations of linguistic words,
rather than from populations of speakers. In this case, the set of all English words is
the relevant population that we want to make inferences upon. One also has to think
about such a ‘population of items’ in the context of experimental studies, which almost
always sample not only participants but also items.

The big question is: how can you make inferences about the population? In fact,
there are different ways of answering this question, with different schools of thought

9	 Inferential Statistics 1
Significance Testing

15034-2313q-3pass-r02.indd 157 10/3/2019 5:51:59 PM

DolanA
Highlight
curly quotes please

158  Inferential Statistics 1: Significance

Figure 9.1. � Schematic depiction of a sample drawn from a specified population; sam-
ple estimates (Roman letters) are used to make inferences about population
parameters (Greek letters)

that are philosophically quite distinct from each other (for a great discussion, see
Dienes, 2008). Perhaps the most widely used approach is null hypothesis significance
testing, often abbreviated NHST.

NHST is ubiquitous, but from the outset it should be said that it has also received
much criticism (e.g., Goodman, 1999; Krantz, 1999; Nickerson, 2000; Sterne &
Smith, 2001; Gigerenzer, 2004; Kline, 2004; Thompson, 2004; Hubbard & Lindsay,
2008; Cumming, 2012, 2014; Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2016;
Vasishth & Gelman, 2017, among many others). I think it is dangerous for statistics
textbooks to teach significance testing without mentioning that there is controversy
surrounding this approach. I will discuss some of these issues later.

NHST, as it is used today, has grown over time out of several distinct historical
strands. It incorporates ideas from Sir Ronald Fisher, Jerzy Neyman, Egon Pearson,
and others. Perezgonzalez (2015) reviews how what is considered significance testing
today is actually a logically inconsistent conglomerate of the Fisherian tradition of
significance testing and the Neyman-Pearson approach. Although a full disentangle-
ment of the different strands of significance testing is beyond the scope of this book
(see Perezgonzalez, 2015), I will try my best to convey significance testing in such a
way that certain common thinking traps are avoided. In addition, following the recom-
mendations of Cumming (2012, 2014), I will try to alleviate at least some of the con-
cerns surrounding NHST by placing stronger emphasis on effect sizes (this chapter)
and interval estimates (next chapter).

At the heart of significance testing lies a particular view of probability, some-
times called ‘frequentism’. Frequentists interpret probabilities in terms of long-run
relative frequencies. Let us exemplify what this means in the context of predicting a
coin flip. For a frequentist, the statement that the probability of heads is p = 0.5 can-
not be meaningfully made about a singular coin flip, which comes up as either heads
or tails. Instead, the frequentist thinks of the probability p = 0.5 as the long-run rela-
tive frequency of an infinite number of coin flips. As you tally more and more coin
flips, the relative frequency converges towards 0.5. NHST is designed with such
long-run frequencies in mind, with the goal of keeping the rate of making wrong
claims about the population at a low level. The beauty of NHST lies in the fact that,
if it is used correctly, a researcher has a well-specified error rate for a statistical test.

15034-2313q-3pass-r02.indd 158 10/3/2019 5:51:59 PM

Inferential Statistics 1: Significance  159

9.2. � Effect Size: Cohen’s d
Let us start with a concrete example, modeling a difference between two groups. Con-
sider the fact that women and men differ in their vocal frequencies. What our ear per-
ceives as ‘voice pitch’ is commonly measured as ‘fundamental frequency’ in the unit of
‘Hertz’. Imagine you conducted a study with a sample of 100 women and 100 men, find-
ing that their fundamental frequencies differed on average by 100 Hz. The problem is that
sampling itself is a random process. Whenever you sample any two groups from a popu-
lation of interest, you are bound to find small differences due to chance processes alone.
This is the case even if there is actually no difference in the population. So, is 100 Hz a
big or small difference? And is it enough to conclude that there’s a difference between
women and men in the population this sample was drawn from? More generally, what
factors should affect our confidence in there being such a difference in the population?

I will frame the following discussion in terms of three crucial ‘ingredients’ that
affect the confidence with which you make claims about the population:

1	 The magnitude of a difference

All else being equal, the bigger the difference between two groups, the more you
should expect there to be a difference in the population.

2	 The variability in the data

All else being equal, the less variability there is within the sample, the more cer-
tain you can be that you have estimated a difference accurately.

3	 The sample size

All else being equal, bigger samples allow you to measure differences more
accurately.

Let’s focus on the first ingredient, the magnitude of an effect. In the case of the
voice pitch example, the effect has a raw magnitude of 100Hz. This is an unstand-
ardized measure of effect size. All forms of inferential statistics take effect size into
account to some extent and, all else being equal, stronger effect sizes result in stronger
inferences. If the 100 Hz difference between women and men had been, say, 5 Hz,
you would be much less confident that there is actually a difference in the population.

There are also standardized measures of effect size, of which you have already seen
R2 (Chapter 4 and 6), Pearson’s r (Chapter 5), and standardized regression coefficients
(Chapter 6). These standardized measures of effect size are more interpretable across
studies. In the context of this discussion, it makes sense to introduce yet another stand-
ardized measure of effect size, Cohen’s d. This statistic is used to measure the strength
of a difference between two means (x1 and x2). The formula for Cohen’s d is simply
the difference between two means (the raw strength of an effect) divided by the stand-
ard deviation of both two groups together (the overall variability of the data). As you
saw for other statistics in this book, the division by some measure of variability (in this
case the standard deviation s) is what makes this a standardized measure.

d x x
s

= −1 2 . � (E9.1)

15034-2313q-3pass-r02.indd 159 10/3/2019 5:52:03 PM

160  Inferential Statistics 1: Significance

Notice that this formula actually combines two of the ingredients, namely, ingre-
dients one and two (‘magnitude of an effect’, ‘variability in the data’). Cohen’s d is
going to be large when either the difference between the group means is very large
or when the standard deviation is very small s. Informally, I like to think of this as
a signal-to-noise ratio. You are able to measure a strong effect either if the signal is
very strong (large difference) or if the ‘noise’ is very weak (small standard deviation).

Cohen (1988) discussed a rule of thumb according to which “small", “medium" and
“large" effects are d = 0 2 0 5. , . and 0 8. , respectively. In mathematical notation, the
vertical bars indicate absolute values, which means that the effect size can be positive
or negative (both d = 0.8 and d = −0.8 are large effects). Whether d is positive or nega-
tive only depends on which mean is subtracted from which other mean.

In fact, another standarded measure of effect size you already know has a similar
conceptual structure to Cohen’s d namely, Pearson’s correlation coefficient r (Chap-
ter 5). The formula for the computation of Pearson’s r is as follows:

r
s
s s
x y

x y

= ,
2

� (E9.2)

The sx y,
2 is the numerator (the number above the line in the fraction), it describes the

‘co-variance’ of x and y. As the name suggests, the co-variance measures how much two
sets of numbers vary together.1 The deminator (the divisor below the line in the fraction)
contains the standard deviations of the x and y variables (sx and sy) multiplied by each other.
The standard deviation is always given in the unit of the data. Because of this, dividing the
co-variance sx y,

2 by the product of sx and sy divides the metric of the data out of this statistic,
yielding a dimensionless statistic that can be compared across datasets, Pearson’s r.

And just as is the case with Cohen’s d, I want you to realize that Pearson’s correla-
tion coefficient r actually combines two of the ingredients, namely, the ‘magnitude of
an effect’ and ‘the variability in the data’. Thus, conceptually, this formula actually has
the same signal-to-noise structure as Cohen’s d. If the covariation of two variables is
strong (a strong ‘signal’), r will be large. If the variability in sx and sy is small (little
‘noise’), then r will be large as well. Thus, to sum up, both Pearson’s r and Cohen’s d
grow when the numerator (‘signal’) is very large, or when the denominator (‘noise’)
is very small.

Figure 9.2 serves to strengthen our intuitions regarding these ideas. For this graph,
I want you to allow yourself something that you are otherwise not allowed to do,
which is to pretend—for the time being—that you can make conclusions about a
population from a graph alone. Think about the following question. How confident
are you that the two distributions (density curves) come from the same distribution?

1	 The formula for the covariance is s
n

x x y yx y
i

n

i i, .2

1

1
1

=
−

−() −()
=
∑ The term x xi −() measures the

x-distance of each data point from the x-mean; the term y yi −() � does the same for the y-mean.

Let’s illustrate how this works if two variables are strongly positively correlated. If a data point
is much above the x-mean and also much above the y-mean, the multiplication of the two devia-
tion scores makes the co-variance grow. The same goes for the case in which the x-deviations and
y-deviations are both negative, since multiplying two negative numbers yields a positive number.

15034-2313q-3pass-r02.indd 160 10/3/2019 5:52:17 PM

DolanA
Highlight
curly quotes please

DolanA
Highlight
curly quotes please

DolanA
Highlight
curly quotes please

Inferential Statistics 1: Significance  161

Informally, then, ask yourself how easy it is to visually detect the difference between
the two groups.

From Figure 9.2a to Figure 9.2b, the standard deviation is halved, which decreases
the overlap between the two distributions. This makes it easier to tell the two groups
apart, which shows you how, even if the means don’t change at all, you may be more
confident about the presence of a difference if the standard deviations shrink. Finally,
if the group difference is then increased (Figure 9.2c), it is even easier to tell the
two distributions apart. This succession of plots thus shows the interplay between the
magnitude of an effect and the variability in the data. Notice how Cohen’s d increases
when the variance is decreased, and it further increases when the group differences
are increased.

9.3. Cohen’s d in R
Let’s compute Cohen’s d for the taste/smell dataset from Chapter 7. First, load the data
from Winter (2016) back into your current R session.

Figure 9.2. � A representation of how within-group variance and magnitude of the differ-
ence between two group means impacts our ability to tell two distributions
apart

15034-2313q-3pass-r02.indd 161 10/3/2019 5:52:18 PM

162  Inferential Statistics 1: Significance

library(tidyverse)

chem <- read_csv('winter_2016_senses_valence.csv') %>%
 filter(Modality %in% c('Taste', 'Smell'))
chem %>% print(n = 4)

A tibble: 72 x 3
 Word Modality Val
 <chr> <chr> <dbl>
1 acidic Taste 5.54
2 acrid Smell 5.17
3 alcoholic Taste 5.56
4 antiseptic Smell 5.51
... with 68 more row

Cohen’s d is implemented in the cohen.d() function from the effsize pack-
age (Torchiano, 2016). Let’s use this function to look at the strength of the valence
difference between taste and smell words.

library(effsize)

cohen.d(Val ~ Modality, data = chem)

Cohen's d

d estimate: 1.037202 (large)
95 percent confidence interval:
 inf sup
0.5142663 1.5601377

The difference between taste and smell words has a large effect size, d = −1.04.

9.4. � Standard Errors and Confidence Intervals
Notice how the formulas for Cohen’s d or Pearson’s r have no term for the sample size
N. This means that large effects can be obtained even for very small samples. This can
easily be demonstrated with the following code, which creates a perfect correlation with
just two data points, resulting in the highest possible correlation coefficient, r = 1.0.

Correlate the points [1,2] and [2, 3]:

x <- c(1, 2) # create x-values

y <- c(2, 3) # create y-values

Perform correlation:

cor(x, y)

[1] 1

15034-2313q-3pass-r02.indd 162 10/3/2019 5:52:18 PM

Inferential Statistics 1: Significance  163

If this dataset is your sample, how confident are you about this perfect correlation
saying something about the population? Given that there are only two data points, any
claims about the population are obviously on very shaky grounds, showing that effect
size alone is clearly not enough. Standardized effect size measures such as Cohen’s
d and Pearson’s r only contain two of the three ingredients—they are missing the
sample size.

The key workhorse that incorporates N into our inferential statistics is the standard
error. When estimating a population mean μ via a sample mean x , the standard error
is defined as follows:2

SE s
N

= � (E9.3)

This standard error combines two of the ingredients, namely the ‘variability in the
data’ (the numerator s) and the ‘sample size’ (the denominator N) . Informally, the
standard error is often paraphrased as indicating the precision with which a quantity is
measured. Smaller standard errors measure the corresponding parameters (such as the
mean) more precisely. Alternatively, large standard errors indicate that you are more
uncertain in your estimates. If N is large or s is small, the standard error is small as
well. In other words, you can measure a mean precisely either if there’s lots of data or
if there’s little variation.

Standard errors can be used to compute ‘95% confidence intervals’, often
abbreviated ‘CI’. As you will see, confidence intervals have a lot going for them
(Cumming, 2012, 2014), although they are not without their critics (Morey et al.,
2016). Confidence intervals are calculated by taking the sample estimate—in this
case, the mean—and computing the boundary that is about 1.96 times the standard
error above and below this sample estimate:3

CI x SE x SE= − +[]1 96 1 96. * , . * . � (E9.4)

Let’s exemplify this with some easy-to-work-with numbers: for a sample mean
of 100 and a standard error 10, the lower bound of the 95% confidence interval is
100 1 96 10 80 4− =. * . . The upper bound is 100 1 96 10 119 6+ =. * . . Thus, based on this
mean and this standard error, the 95% confidence interval is 80 4 119 6. , . .[]

Because the confidence interval is based on the standard error, it also depends on
the same two ingredients, the standard deviation and N, as highlighted by Figure 9.3.
Notice how the confidence interval shrinks when more data is added (middle dataset).
Notice how the confidence interval grows again when the variance in the dataset is
increased (dataset to the right of Figure 9.3).

But what, really, does the 95% confidence interval mean? This is where things become
a bit tricky. The 95% confidence interval is enmeshed with the frequentist statistical
philosophy mentioned earlier in this chapter. Remember that, according to this view of

2	 The formulas for other types of standard errors (for example, for regression coefficients) are differ-
ent from this one, but conceptually the overall logic stays the same.

3	 I am skipping over some important technical details here. In this example, I used the value ’1.96’ to
compute the 95% confidence interval; however, the precise value differs depending on sample size.
The larger the sample size, the more this value will converge to be 1.96.

15034-2313q-3pass-r02.indd 163 10/3/2019 5:52:25 PM

Figure 9.3. � Errors bars indicate the 95% confidence interval; the interval shrinks as the
number of data points increases, and it grows again if the standard deviation
increases

Figure 9.4. � “The dance of the confidence intervals” (Cumming, 2012, 2014); see descrip-
tion in text

15034-2313q-3pass-r02.indd 164 10/3/2019 5:52:25 PM

Inferential Statistics 1: Significance  165

probability, objective probability cannot plausibly be assigned to singular events; a coin
toss is either head or tail. Similarly, the actual population parameter of interest may or
may not be inside the confidence interval—you will actually never know for sure. How-
ever, if you imagine an infinite series of experiments and compute a confidence interval
each time, 95% of the time this interval would contain the true population parameter.

Figure 9.4 illustrates this idea, showing what Cumming (2012, 2014) calls “the
dance of the confidence intervals”. For the construction of Figure 9.4, I sampled 60
data points from the same underlying distribution each time. The distribution was
defined with the population mean μ = 2 and the population standard deviation σ = 5.
You can think of this as multiple researchers all trying to establish where the popula-
tion parameter is, with each researcher drawing a different sample.

The dashed confidence intervals with triangles include 0, and the dashed confidence
interval with the square does not even cover the true population mean! Thus, by span-
ning confidence intervals around your sample estimates, you capture the population
parameter μ most of the time. You can be confident in the procedure working out in the
long run, but you cannot be confident about a particular dataset at hand.

9.5. � Null Hypotheses
When engaging in null hypothesis significance testing, you are imposing a hard-cut
decision rule to the confidence intervals shown in Figure 9.4. In other words, you strait-
jacket the interval nature of the confidence intervals into a procedure that leads to binary
decisions, ‘yes’ or ‘no’. While this may be conceptually appealing due to its simplicity,
the practice of making binary decisions based on data is also one of the main criticisms
raised against significance testing. It has been argued to lead to “dichotomous thinking"
(Cumming, 2012, 2014) or “lazy thinking" (Gardner & Altman, 1986: 746), or to “mind-
less … statistical rituals" (Gigerenzer, 2004). Nevertheless, you have to engage with
significance testing because the corresponding p-values are abundant in the literature.4

Start by stating a null hypothesis (H0) and a corresponding alternative hypothesis.
When performing a significance test on the difference between two groups, this null
hypothesis is usually:

H0 : there is no difference between groups

The alternative hypothesis (HA) is usually what the researcher actually believes in.
In this case, the alternative hypothesis may be:

HA : there is a difference between groups

In mathematical notation, this translates to:

H0 1 2:� ��

HA :� �1 2�

4	 A disclaimer is needed here. It has to be emphasized that the procedure specified here is what has
been adopted by the community; it does not follow the intentions of the original developers (see
Perezgonzalez, 2015).

15034-2313q-3pass-r02.indd 165 10/3/2019 5:52:31 PM

DolanA
Highlight
curly quotes please

DolanA
Highlight
curly quotes please

DolanA
Highlight
curly quotes please

166  Inferential Statistics 1: Significance

In other words, you assume that μ1 and μ2 are equal under the null hypothesis.
Another way of writing down the null hypothesis is as follows:

H0 1 2 0:� �� �

In plain English: ‘the difference between the two means is assumed to be zero’ …
which is the same as saying that the two groups are assumed to be equal. Whether the
null hypothesis is actually true or not is not the question. Notice one key detail in my
notation: I am using Greek letters to specify the null hypothesis, which shows that the
null hypothesis is an assumption about the population.

Once the null hypothesis has been stated for the population, you look at the par-
ticular sample from your study to measure how compatible or incompatible the actual
data is with this initial assumption. That is, when engaging in NHST, you measure
the incompatibility of the data with the null hypothesis. However, the only statements
you are allowed to make are with respect to the data—whether the null hypothesis is
actually true or not is out of your purview. The null hypothesis itself is an imaginary
construct that you can never measure directly. I like to think about the null hypothesis
as a ‘statistical scapegoat’ that you posit for the sake of argument. It’s there to have
something to argue against.

9.6. � Using t to Measure the Incompatibility with
the Null Hypothesis

Once the null and alternative hypothesis have been stated, you need to measure the
incompatibility of the data with the null hypothesis. This is where ‘test statistics’ come
into play. In ‘cookbook’ approaches to significance testing (see Chapter 16 for a criti-
cal discussion), there’s a bewildering array of statistical tests, each with their own test
statistic, such as t, F, χ2, and more. Luckily—because this book doesn’t endorse the
testing framework—you don’t have to learn all of these statistics. Learning about one
of them, t, will suffice for our purposes. t is commonly used in the context of testing
the difference between two groups.

t x x
SE

= −1 2 � (E9.5)

Notice how t combines all three of the ingredients mentioned earlier. The numer-
ator contains the difference between two group means, which is the unstandardized
effect size (the first ingredient). The denominator features the standard error, which,
as was just discussed in the previous section, combines two ingredients—the vari-
ability in the data and the sample size. This formula should look remarkably similar
to Cohen’s d (see E9.1 above). The only difference is that t has the standard error
rather than the standard deviation in the denominator. Because of this change, t
cares about sample size (whereas Cohen’s d doesn’t). Figure 9.5 visualizes how the
three ingredients impact t.

Very importantly, notice that I am using Roman rather than Greek letters in the for-
mula for the t-value. This is because the t -value is an actual estimate that is generated

15034-2313q-3pass-r02.indd 166 10/3/2019 5:52:33 PM

Inferential Statistics 1: Significance  167

from a sample. t will be our arbiter of significance—this will be the measure that
is used to argue that the data is incompatible with the null hypothesis. However,
we’ve now got a new problem: what’s a small or a large t-value? And how big does a
t-value have to be in order for us to conclude that the sample is incompatible with
the null hypothesis? To be able to answer these questions, you need to know how t is
distributed.  5 

9.7. � Using the t-Distribution to Compute p-Values
The statistic t actually has its own distribution under the null hypothesis, which is shown
in Figure 9.6.6 I won’t go into the details of where this distribution comes from, but notice
the striking similarity to the normal distribution. In fact, this distribution looks almost
exactly like the normal distribution. The only difference is that the ‘tails’ (towards the left
and the right) are a bit heavier compared to the normal, which means that very large or
very small values are slightly more probable.

The t-distribution captures the probability of particular t-values if the null hypoth-
esis of equal means were true. Given this, think about what the shape of the t-distribu-
tion encapsulates conceptually: The bell-shaped curve of this distribution essentially
states that, under the null hypothesis of equal means, very large or very small t-values
are very improbable. That is, only very rarely will random sampling result in samples
with extreme t-values. In contrast, t-values closer to zero are much more probable
under the null hypothesis of equal group means. This corresponds to the fact that in the
absence of any group difference in the population (H0), most randomly drawn samples
are going to exhibit only very minor differences between two group means.

One way to think about this is to draw random samples from a distribution in which
the null hypothesis is actually true. If you draw lots of samples, most selected sam-
ples will have t-values that are close to 0. Very rarely will random sampling produce
extreme t-values.

The t-distribution can be used to compute the p-value. This number is a conditional
probability, namely, the probability of the relevant test statistic (in this case, t) con-
ditioned on the null hypothesis being true. For t = 1.5, the p-value is p = 0.14. This
number is achieved by adding the area under the curve for the two shaded regions in

5	 Technical side note: this is a simplified formula as the error in the denominator is computed differ-
ently for different types of t-tests (paired versus unpaired).

6	 Technical side note: the t-distribution in Figure 9.6 is shown for 100 degrees of freedom.

Figure 9.5. � Three forces that impact t; more extreme t-values indicate a greater incompat-
ibility with the null hypothesis of equal means5

15034-2313q-3pass-r02.indd 167 10/3/2019 5:52:33 PM

168  Inferential Statistics 1: Significance

Figure 9.6. That is, the p-value is the area under the curve for t = 1.5 or values more
extreme than that, as well as for t = −1.5 and more extreme than that.7

Even though the number p = 0.14 seems pretty low, it is not enough to reject the
null hypothesis for various historical reasons. The scientific community has converged
on a rule where only p-values below the threshold of 0.05 are treated as good-enough
evidence against the null hypothesis. This threshold is called the ‘alpha level’, with
α = 0.05 being the conventional threshold. If p < α, the null hypothesis is rejected.
The specific t-value that makes a p-value cross the α-threshold is also called a ‘critical
value’. The critical value turns out to be t = 1.98 in this case. If a sample generates
a t-value that is as larger than this (or smaller than t = −1.98), p will be below 0.05.

Once p < α, a result is claimed to be ‘statistically significant’, which is just the same
as saying that the data is sufficiently incompatible with the null hypothesis. If the
researcher obtained a significant result for a t-test, the researcher may act as if there
actually was a group difference in the population.

Let us recap what you have learned about this procedure to this point. You define
a population of interest, such as the population of all English speakers. You sample
from this population of interest. When testing a difference between two groups, you
state the null hypothesis μ1 = μ2 for the population. You compute a t-value from your
sample. Finally, you investigate how improbable this t-value is under the null hypoth-
esis of equal group differences. If p < 0.05, you act as if the null hypothesis is not true.

7	 This is what’s called a two-tailed test because it involves both tails of the t-distribution. In perform-
ing a two-tailed test, you disregard the sign of the t-value. That is, you are testing a non-directional
hypothesis, which is standard procedure in most psychological and linguistic applications where
people rarely consider one-tailed tests. As you want to be open to detecting significant effects that
go the other way, performing two-tailed tests is generally preferred, and it is the more conservative
option.

Figure 9.6. � The t-distribution; striped areas indicate the probability of obtaining a t-value
that is +1.5 or larger (right tail), and –1.5 or smaller (left tail); both areas
taken together are equal to the p-value of a two-tailed significance test for an
observed t-value of 1.5

15034-2313q-3pass-r02.indd 168 10/3/2019 5:52:33 PM

Inferential Statistics 1: Significance  169

Notice that at no point in this procedure did you directly compute a statistic that
relates to the alternative hypothesis. Everything is computed with respect to the null
hypothesis. Researchers commonly pretend that the alternative hypothesis is true
when p < 0.05. However, this is literally pretense because the significance testing
procedure has only measured the incompatibility of the data with the null hypothesis.

9.8. � Chapter Conclusions
This chapter started with the fundamental notion that in inferential statistics sample esti-
mates are used to make inferences about population parameters. This chapter covered the
basics of null hypothesis significance testing (NHST). A null hypothesis is posited that
is assumed to characterize a phenomenon in the population, such as the means of two
groups being equal (μ1 = μ2). Then, sample data is collected to see whether the sample is
incompatible with this original assumption. Three ingredients influence one’s confidence
in rejecting the null hypothesis—the magnitude of an effect, the variability in the data,
and the sample size. Standardized effect size measures such as Cohen’s d and Pearson’s
r combine two of these (magnitude and variability), but they ignore sample size. Stand-
ard errors and confidence intervals combine variability and sample size. The test statis-
tics used in significance testing (such as t) combine all three ingredients, and they are
used to compute p-value. Once a p-value reaches a certain community standard (such as
 p < 0.05), a researcher may act as if the null hypothesis is to be rejected.

9.9. � Exercises

9.9.1. � Exercise 1: Gauging Intuitions About Cohen’s d

In this exercise, you will generate some random data to gauge your intuitions about
Cohen’s d.

Number of data points:
n <- 50

Random y:

y <- c(rnorm(n, mean = 5, sd = 1),
 rnorm(n, mean = 2, sd = 1))

Levels for x predictor:

x <- rep(c('A', 'B'), eac= n)

Combine:

df <- tibble(x, y)

Calculate Cohen's d:

cohen.d(y ~ x, df)

15034-2313q-3pass-r02.indd 169 10/3/2019 5:52:33 PM

170  Inferential Statistics 1: Significance

After implementing this code, play around with different means and different val-
ues for n. In addition, change the standard deviation of both groups, or one of the
groups, to assess how this impacts d.

9.9.2. � Exercise 2: Gauging Intuitions About r

In this exercise, you will generate some random data to gauge your intuitions about
Pearson’s r. The code is similar to Chapter 4.

x <- rnorm(50)

y <- 3 * x + rnorm(50, sd = 2)	 # slope = 3

plot(x, y, main = cor(x, y))

Assess how changing the standard deviation and changing the slope impacts the
correlation coefficient.

9.9.3. � Exercise 3: Gauging Intuitions About t and Significance

In this exercise, you will generate some random data to gauge your intuitions about t
and significance tests. The following performs a t-test for 10 participants. The group
difference is specified to be 2, and the standard deviation is 2 as well. Notice that the
following code uses the semicolon to stack up commands in the same line.

Set values:

n <- 10; meandiff <- 2; my_sd <- 2

Perform t-test:

t.test(�rnorm(n, sd = my_sd),
rnorm(n, sd = my_sd) + meandiff)

Run this entire batch of code multiple times. What t-values do you get? How often
does the t-test become significant? Repeat this for different values for n, meandiff,
and sd. This will show you how the three ingredients impact the test statistic and the
resultant p.

15034-2313q-3pass-r02.indd 170 10/3/2019 5:52:36 PM

10.1. � Common Misinterpretations of p-Values
This chapter deals with issues in significance testing. First, it’s important to talk
about some common misunderstandings of p-values, which are notoriously easy to
misinterpret.

One common misinterpretation is that the p-value represents the probability of the
null hypothesis being true. This is not the case. Always remember that the null hypoth-
esis is an assumption—its truth cannot be known.

Another common misinterpretation is that the p-value represents the strength of an
effect. The last chapter discussed standardized measures of effect size such as Cohen’s d.
The statistics used in significance testing, such as t, do in fact incorporate effect size, but
they also take the sample size into account. Measures such as t and the resulting p com-
press all the three ingredients of significance discussed in Chapter 9 into a single number.
Because the p-value combines all ingredients, you cannot simply ‘read off’ the contribu-
tion of any one of the ingredients. In particular, a very small effect may still have a low
p-value if the sample size is large. Thus, it is possible that a ‘significant’ result is very
‘insignificant’ in terms of effect size. This is why it’s important to always mention
some measure of effect size alongside the results of significance tests (Cumming,
2012, 2014).

A final misinterpretation worth mentioning is the idea that if p < 0.05, then one
is justified to believe more strongly in one’s hypothesis. This is not the case for two
reasons. First, the p-value measures the incompatibility of the data with the null
hypothesis H0, it doesn’t allow any direct conclusions about the alternative hypothesis
HA. The second reason is that in line with frequentist statistical philosophy, p < 0.05
says nothing concretely about the data at hand, instead, acting in line with this thresh-
old ensures that you make correct decisions 95% of the time in the long run (see
Dienes, 2008: 76). Philosophically, this is very dissatisfying. It thus doesn’t come as a
surprise that the logic of p < 0.05 is routinely flipped, with researchers interpreting this
number as if it is measuring how much the data supports their desired theory (rather
than how incompatible the data is with H0).

10.2. � Statistical Power and Type I, II, M, and S Errors
Several errors can happen when engaging in null hypothesis significance testing. Spu-
riously significant results are called Type I errors. A Type I error involves obtaining a
significant effect even though the null hypothesis is actually a true characteristic of the

10	 Inferential Statistics 2: Issues
in Significance Testing

15034-2313q-3pass-r02.indd 171 10/3/2019 5:52:36 PM

172  Inferential Statistics 2: Issues

Table 10.1. � Type I errors (false positive) and Type II errors (false negatives) in hypothesis
testing

Results from your sample

p < 0.05 p > 0.05

State of the world
(the population)

Nothing is there
(Ho is actually true)

Type I error Correct decision
(don’t claim result)

Something is there
(Ho is actually false)

Correct decision
(claim result)

Type II error

population. A Type II error involves failing to obtain a significant effect even though
the null hypothesis is false. Type I errors are also known as false positives; Type II
errors are also known as false negatives.

Table 10.1 helps to clarify Type I and Type II errors. The rows show two states of
the world: one in which the null hypothesis is true, and one in which it is false. In an
actual analysis, the state of the world is unknown. The columns show two different
scenarios: one in which the researcher obtains a sample that leads to p < 0.05 for the
stated null hypothesis, and one in which the researcher obtains a sample that leads to
p < 0.05.

Let’s create a Type I error in R, using the t.test() function, which tests
whether a group difference is significant (see Appendix A). The command
below compares two sets of random numbers, rnorm(10) and rnorm(10).
The default for the rnorm() function is μ = 0. This means that the command
below compares two sets of random numbers drawn from a normal distribution
with the same mean (i.e., it is the same distribution). The set.seed() com-
mand is merely used to ensure that you and I get the same ‘random’ numbers (see
Chapter 6.4).

set.seed(42)	# set random number seed
t.test(rnorm(10), rnorm(10)) # output not shown
t.test(rnorm(10), rnorm(10)) # output not shown
t.test(rnorm(10), rnorm(10)) # output not shown
t.test(rnorm(10), rnorm(10)) # p < 0.05

	 Welch Two Sample t-test

data: rnorm(10) and rnorm(10)
t = 2.3062, df = 17.808, p-value = 0.03335
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
0.06683172 1.44707262
sample estimates:
mean of x mean of y
0.5390768 -0.2178754

15034-2313q-3pass-r02.indd 172 10/3/2019 5:52:36 PM

Inferential Statistics 2: Issues  173

Running the test exactly four times yielded a significant test result on the fourth try.
Random sampling created a spuriously significant result. We know that this is a Type
I error because the distributions have been specified to have the same means (μ1 = μ2),
so technically there shouldn’t be any difference. If you accept the conventional signifi-
cance threshold, you expect to obtain a Type I error 5% of the time (1 in 20). Now you
realize that setting the alpha level to α = 0.05 is the same as specifying how willing
one is to obtain a Type I error. It’s possible to set the alpha level to a lower level, such
as α = 0.01. In this case, Type I errors are expected to occur 1% of the time.

It’s important to keep frequentist philosophy in mind when thinking about these pro-
cedures. For any given result, you can never rule out a Type I error. Chance sampling
may always create apparent patterns that lead to spuriously significant results. However,
you have control over how often you are willing to commit a Type I error. In other
words, you have certainty about the significance testing procedure working out in the
long run, even though you will always remain uncertain about any given dataset at hand.

Next, let’s use R to simulate Type II errors. The following code initializes one group
to have a mean of 1 and another group to have a mean of 0. Thus, this time around
there is a difference in the population, and any result that is p > 0.05 would constitute
a false negative. This is the case for the third run of the t.test() function below,
for which the p − value is 0.057.

set.seed(42)
t.test(rnorm(10, mean = 1), rnorm(10, mean = 0))

t.test(rnorm(10, mean = 1), rnorm(10, mean = 0))
t.test(rnorm(10, mean = 1), rnorm(10, mean = 0))

	 Welch Two Sample t-test

data: rnorm(10, mean = 1) and rnorm(10, mean = 0)
t = 2.0448, df = 16.257, p-value = 0.05742
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
-0.03405031 1.95683178
sample estimates:
mean of x mean of y
0.97978465 0.01839391

Although tantalizingly close to 0.05, if you follow the procedure strictly, you have
failed to reject the null hypothesis given your pre-specified alpha level. You cannot
accept this result as significant; otherwise, you would give up the whole certainty that
is afforded by specifying the alpha level in advance. Some people talk about “margin-
ally significant” effects if they obtain p-values close to 0.05, but such talk is betraying
the whole procedure.”

The Type II error rate is represented by the letter β, the probability of missing a real
effect. The complement of β is what is called ‘statistical power’, 1 − β, sometimes
represented by the letter π (‘pi’). The power of a testing procedure describes its abil-
ity to detect a true effect. Many researchers aim for π > 0.8; that is, an 80% chance of
obtaining a significant result in the presence of a real effect.

15034-2313q-3pass-r02.indd 173 10/3/2019 5:52:36 PM

winterb
Highlight
Monspacing still not correct. Notice that each line has the same number of characters, hence, all the symbols should be on top of each other, since Courier is a monospace font. Since the content of the three lines beginning with "t.test()" is the same, you can copy and past the second (middle) line over to the third.

DolanA
Sticky Note
Apex: Basically, each character in the bottom line needs to align exactly with the character above.

DolanA
Cross-Out

174  Inferential Statistics 2: Issues

Just like significance, statistical power is affected by the three ingredients (effect
size, variability, sample size). This means that you have three ways of increasing
power: increase the effect size (such as by making your experimental manipulations
more extreme), decrease the variability in your sample (for example, by making the
sample more homogeneous), or increase your sample size by collecting more data.
Arguably, sample size is the easiest thing to control. Thus, in practice, researchers
most often aim to increase statistical power by conducting studies with larger sample
sizes.

It is quite dangerous to place too much emphasis on low-powered studies, regard-
less of whether the results are significant or not. In particular, low-powered studies
are more likely to suffer from what are called Type M and Type S errors (two terms
first introduced by Gelman and Carlin, 2014). A Type M error is an error in estimat-
ing the magnitude of an effect, such as when your sample indicates a much bigger
effect than is actually characteristic of the population. A Type S error is even worse; it
represents a failure to capture the correct sign of an effect. For example, your sample
may indicate taste words to be more positive than smell words, but in fact it’s the other
way around in the population. For a useful discussion of Type M and Type S errors in
linguistics, see Kirby and Sonderegger (2018). Increasing statistical power not only
lowers one’s chances of committing a Type II error, but it also lowers the Type M and
Type S error rate.

Considering statistical power is of pivotal importance for the interpretation of
research studies. Many linguistic studies have very small sample sizes, which makes
theoretical conclusions based on these samples quite flimsy. A case in point is a pho-
netic phenomenon known as ‘incomplete neutralization’. I won’t go into the details
on this (highly controversial) topic here, but the main issue is that there were lots of
studies that found results in support of incomplete neutralization, as well as quite a
few studies that failed to find an effect. This led to an ugly battle of some researchers
saying that incomplete neutralization exists, and others saying that it doesn’t exist.
Nicenboim, Roettger, and Vasishth (2018) show that accumulating the evidence
across studies indicates a reasonably strong signal for the presence of incomplete
neutralization.

This also points to another problem of small sample sizes: what researchers call
‘null results’ (p > 0.05) are basically uninterpretable if the power of a study is low.
This is often paraphrased by the aphorism ‘absence of evidence is not evidence of
absence’. This means that you cannot easily claim that something doesn’t exist if you
failed to find a significant effect. This is the thinking error that characterized a lot of
the studies that purported that the above-mentioned phenomenon of incomplete neu-
tralization doesn’t exist. They based this claim on exceedingly small samples, some-
times having samples consisting of only five speakers and a few words. Given the
low statistical power of those studies, it comes as no surprise that they failed to find a
significant effect.

Let me use this opportunity to say that it is safe to say most studies in linguis-
tics are underpowered, which is a very dangerous situation to be in for any scientific
field (Ionnadis, 2005). In some cases, having low power is unavoidable, such as when
doing fieldwork on a moribund language of which there are only a handful of speakers
left. However, in many other cases, there are no good reasons for low participant num-
bers and the researcher could easily have collected more data. The payoff of collecting

15034-2313q-3pass-r02.indd 174 10/3/2019 5:52:36 PM

Inferential Statistics 2: Issues  175

more data is great, as it means that theoretical conclusions are based on sound evi-
dence. Simply put, larger samples are more informative.

But what’s a small or large sample? And how can you calculate power? As men-
tioned before, statistical power is influenced by the raw magnitude of an effect, the
variability of the phenomenon, and the sample size. The problem is that the true
numerical values for such quantities as the effect size cannot be known. So, in order
to estimate power, you need to form reasonable expectations about effect size, prefer-
ably coming from past research. You can also calculate power for multiple effect sizes
(from best case to worst case) to determine a reasonable sample size.

That said, this book unfortunately doesn’t guide you through any actual power calcula-
tions. This is because ready-made formulas for calculating statistical power only exist for
simple significance tests, not for many of the more complex models considered in this
book, such as linear mixed effects models (Chapters 14 and 15). To circumvent this bot-
tleneck, statistical power can be simulated by generating random datasets that exhibit the
expected properties. Unfortunately, this requires more R programming than can be taught
in this book. I recommend reading Kirby and Sonderegger (2018) and Brysbaert and
Stevens (2018) for useful recommendations for power simulations with linguistic appli-
cations. Brysbaert and Stevens (2018) discuss the simr package (Green & MacLeod,
2016), which facilitates power simulations for mixed models.

10.3. � Multiple Testing
Since all significance tests have a positive Type I error rate, the more tests a researcher
conducts, the more likely they are going to stumble across a Type I error. This is
known as the ‘multiple testing’ or ‘multiple comparisons’ problem. The ‘family-wise
error rate’ is the probability of obtaining at least one Type I error for a given number
of tests.1 In the following formula, k represents the number of tests conducted at the
specified alpha level (in this case α = 0.05).

FWER k= − −()1 1 0 05. � (E10.1)

The 1 0 05−(). k term represents the probability of not committing a Type I error
for k number of tests. In the simple case of doing just one test, this term becomes:
1 0 05 0 951−() =. . . This states something you already know: if the null hypothesis is

actually true, there is a high chance of not obtaining a significant result (that’s a good
thing). One minus this number yields the Type I error rate, 1 − 0.95 = 0.05.

To get a feel for this formula, let’s implement it in R and compute the probability of
obtaining a Type error when performing a single test (k = 1):

1 - (1 - 0.05) ^ 1

[1] 0.05

1	 There also is the related concept of the ‘false discovery rate’, which is the expected proportion of
Type I errors out of all tests with significant results. There are other rates as well, with different
methods of correcting for them. The topic of ‘multiple comparisons’ is vast and due to space limita-
tions this book can only scratch the surface.

15034-2313q-3pass-r02.indd 175 10/3/2019 5:52:38 PM

176  Inferential Statistics 2: Issues

The formula exhibits more interesting behavior once the number of significance
tests (k) is larger. Let’s see what happens if a researcher were to conduct 2 or 20 tests:

1 - (1 - 0.05) ^ 2

[1] 0.0975

1 - (1 - 0.05) ^ 20

[1] 0.6415141

Notice how the family-wise error rate increases quite rapidly. For only 2 tests, your
chances of obtaining at least one Type I error are already 10%. When performing 20
significance tests, the chances rise all the way to 64%. For 100 significance tests, it’s
virtually impossible not to obtain at least one spuriously significant result.

Multiple testing problems have disastrous consequences for the interpretation of
research papers. Austin, Mamdani, Juurlink, and Hux (2006) demonstrated the perils
of performing lots of significance tests by testing a series of health-related variables
against people’s zodiac signs. Doing so many tests (for all zodiac signs and lots of
health measures), they were bound to find at least some significant results. And, in
fact, people born under Leo had a higher probability of gastrointestinal hemorrhage,
and Sagittarians had a higher probability of humerus fracture. However, given how
many associations were explored, these “findings” are likely spurious.

Demonstrations of multiple comparisons problem can also be quite entertaining:
Bennett, Baird, Miller, and Wolford (2011) published a paper on the ‘Neural correlates
of interspecies perspective taking in the post-mortem Atlantic salmon’ in the mock
‘Journal of Serendipitous and Unexpected Results’. This paper showed that when a
dead salmon is placed in a brain scanner, it shows neural responses to videos of human
social interactions in certain areas of its dead brain. Of course, this is just a statistical
artifact. Testing brain activation is a noisy process that has a positive Type I error rate,
which means that performing lots of significance tests on individual brain regions
increases the family-wise error rate.

In both the zodiac study and the dead salmon study, the spurious associations disap-
peared once the researchers ‘corrected’ for performing multiple tests. There is a vast
literature on multiple comparisons corrections, with many different approaches. The
overarching logic of these correction procedures is that they make significance tests
more conservative depending on how many tests a researcher conducts. The most
straightforward and most widely used procedure is Bonferroni correction. The Bon-
ferroni method asks you to reset your alpha level depending on k, the number of tests.
The alpha rate is simply divided by the number of tests: α

k
. Let’s say you conducted

two tests. In that case, your new Bonferroni-corrected alpha level is
0 05

2
0 025. . .=

With this new alpha level, a p-value has to be below 0 025. to be treated as significant.
A p-value of, say, p = 0.03 would not count as significant anymore.

When performing this correction, it is sometimes confusing to an audience to see really
low p-values that are not treated as significant. So alternatively, you can uplift the p-value
in correspondence with the Bonferroni-corrected α-level. The following command uses

15034-2313q-3pass-r02.indd 176 10/3/2019 5:52:40 PM

Inferential Statistics 2: Issues  177

the p.adjust() function to adjust a p-value of p =0.03 for two tests, which results in
a new p-value of p = 0 06. (not significant based on the original alpha level).

p.adjust(0.03, method = 'bonferroni', n = 2)

[1] 0.06

Multiple comparisons corrections such as the Bonferroni method are not with-
out their enemies, and there is considerable controversy about when using them is
appropriate. There is a big literature on whether one should correct or not, as well as
a big literature on which precise correction method is the best (e.g., Rothman, 1990;
Nakagawa, 2004). The easiest solution to the multiple comparisons conundrum is
to limit the number of tests at the design phase of your study. If your study only
features a small number of tests, each of which tests a different hypothesis that is
theoretically motivated, the issue of increasing the study-wise Type I error rate is
much diminished.

10.4. � Stopping rules
The final topic to be discussed has a similar logical structure to the multiple compari-
sons problem. Imagine a researcher who wants to conduct a psycholinguistic study but
didn’t decide in advance how much data they were going to collect. After having col-
lecting data from 30 participants, the researcher failed to find a significant effect. So
the researcher decides to add data from 30 more participants. Adding more data seems
like a rather innocuous change—after all, more statistical power is better, isn’t it?

The issue here is that the decision to add more data was based on whether the first
test was significant or not. It’s generally better to have more data, but it’s problematic
to make decisions about one’s sample size contingent on having obtained a significant
result or not.

There’s one key fact that you need to understand in order to recognize why flex-
ibility in sample size is dangerous; namely, if the null hypothesis is true, p-values are
uniformly distributed between 0 and 1. In other words, if the null hypothesis is true,
any value between 0 and 1 is equally probable!

The behavior of a researcher who repeatedly performs significance tests for incre-
mentally increasing sample sizes can easily be simulated (see Simmons et al., 2011).
Figure 10.1 was constructed by performing a t-test repeatedly for 10 participants, 11
participants, 12 participants, and so on. The data was initialized without an actual
difference in the population. The resulting series of p-values is a random walk. Fig-
ure 10.1 shows two such random walks. For the solid line, the researcher obtains a
significant result after adding eight participants to the sample. If data collection is
aborted at this stage, an erroneously significant result is published. The simulation
shows that, in this particular case, the p-value would have gone up again after having
crossed the threshold.

Dienes (2008: 68–69) talks about the need for scientists to have a dedicated ‘stop-
ping rule’, which is a rule that determines when data collection is completed. In other
words, the sample size should be decided in advance. In psychology in particular,
there has been a renewed interest in this stopping rule problem, and many journals

15034-2313q-3pass-r02.indd 177 10/3/2019 5:52:41 PM

178  Inferential Statistics 2: Issues

Figure 10.1. � Assuming the null hypothesis is true, a p-value will eventually cross the sig-
nificance threshold if the sample size is continuously increased; in the case of
the solid line, the p-value would have gone up again if more data was added

now require authors to write a justification for the number of participants being tested.
If you are pre-registering your study via a platform such as the Open Science Frame-
work, you have to state the sample size in advance, as well as a rationale for why this
sample size is appropriate. In some cases, it may be appropriate to argue for a given
sample size based on previous research. For example, I just pre-registered a study
with my student where we based our sample size specifications on the fact that we
previously found significant effects in an experiment of the same sample size. The
more principled way of arguing for a particular sample size is via a power analysis,
for which Kirby and Sonderegger (2018) and Brysbaert and Stevens (2018) provide
helpful pointers.

10.5. � Chapter Conclusions
This chapter has made you aware of lots of issues in significance testing. It has dealt
with Type I errors (false positives), Type II errors (false negatives), Type M errors (get-
ting the magnitude of an effect wrong), and Type S errors (getting the sign of an effect
wrong). In addition, the chapter introduced you to the issue of multiple comparisons,
and the need to have a dedicated stopping rule that specifies when data collection is
over. There are three take-home messages from this chapter. First, aim for high-powered
studies. Second, don’t conduct lots of theoretically unmotivated hypothesis tests with-
out correcting your alpha level (your life will be easier if you limit the number of tests
based on theoretical reasoning). Third, don’t make data collection contingent on having
obtained a significant result—decide in advance how many participants you want to run.

15034-2313q-3pass-r02.indd 178 10/3/2019 5:52:41 PM

Inferential Statistics 2: Issues  179

10.6. � Exercise

10.6.1. � Exercise 1: Gauging Intuitions About the
Bonferroni Method

Imagine you obtained a p-value of p = 0.001 pretty low! But in fact, this p-value is
just one of many. The actual study performed 100 significance tests. Using the Bonfer-
roni method to correct the p-value for this number of tests yields p = 0.1, which is not
significant anymore.

p.adjust(0.001, method = 'bonferroni', n = 100)

[1] 0.1

Play around with different p-values and different tests to get an intuition for how
conservative the Bonferroni method is. You’ll see that it’s quite conservative! This is
an important issue with multiple comparisons correction methods: the more tests you
conduct, the more you have to lower your alpha level. As a result, statistical power
shrinks as well.

15034-2313q-3pass-r02.indd 179 10/3/2019 5:52:41 PM

11	 Inferential Statistics 3
Significance Testing in a
Regression Context

11.1. � Introduction
The last two chapters have introduced you to null hypothesis significance testing. This
chapter applies these concepts to regression modeling. This code-heavy chapter is
more focused on implementation and less focused on concepts. You need to learn how
to apply NHST to regression models and plot confidence intervals.

Remember that there always is uncertainty about where a particular parameter lies
and whether your sample has estimated it correctly. There are two ways to commu-
nicate uncertainty about your models. One way involves communicating uncertainty
about the parameter estimates (the regression coefficients, in particular). The second
way is to communicate uncertainty about the predictions.

This chapter covers how to extract this information from linear model objects in R.
Throughout the chapter, data from Chapters 2, 4 and 5 will be revisited.

11.2. �� Standard Errors and Confidence Intervals
for Regression Coefficients

To start with, let’s revisit the iconicity data from Winter et al. (2017). In Chapter 6,
you created a model in which iconicity was conditioned on four different predictors:
sensory experience ratings, imageability, systematicity, and log frequency. In addition,
you standardized the different predictors to make the coefficients more comparable.
The steps below repeat this analysis. There is one additional change compared to Chap-
ter 6, which is applying the format.pval() function to the p.value column to
make the output more digestible.1 In addition, the code uses the round() function
on the estimate and std.error columns to facilitate the following discussion.

library(tidyverse)
library(broom)

1	 When p-values focus on the SER column are very small numbers, R will display them in ‘base-10
scientific notation’. For example, the number 8.678e-01 translates into 0.8678. In comparison,
8.678e+02 translates into 867.8. The ‘e’ stands for ×10exponent . So, ‘e+02’ means that you have
to multiply by 10 100

2 = ; ‘e-02’ means that we have to divide by 100 (because 10 0 012− = .).
Thus, this notation specifies by how much the decimal point has to be shifted around.

15034-2313q-3pass-r02.indd 180 10/3/2019 5:52:51 PM

Inferential Statistics 3: Regression  181

icon <- read_csv('perry_winter_2017_iconicity.csv')

icon %>% print(n = 4)

A tibble: 3,001 x 8
 Word POS SER CorteseImag Conc Syst Freq
 <chr> <chr> <dbl> <dbl> <dbl> <dbl> <int>
1 a Grammatical NA NA 1.46 NA 1041179
2 abide Verb NA NA 1.68 NA 138
3 able Adjective 1.73 NA 2.38 NA 8155
4 about Grammatical 1.2 NA 1.77 NA 185206
... with 2,997 more rows, and 1 more variable:
Iconicity <dbl>

Standardize predictors:

icon <- mutate(icon,
 SER_z = scale(SER),
 CorteseImag_z = scale(CorteseImag),
 Syst_z = scale(Syst),
 Freq_z = scale(Freq))

Fit model:

icon_mdl_z <- lm(Iconicity ~ SER_z + CorteseImag_z +
 Syst_z + Freq_z, data = icon)

Look at coefficient table:

tidy(icon_mdl_z) %>%
 mutate(p.value = format.pval(p.value, 4),
 estimate = round(estimate, 2),
 std.error = round(std.error, 2),
 statistic = round(statistic, 2))

 term estimate std.error statistic p.value
1 (Intercept) 1.15 0.03 33.34 < 2e-16
2 SER_z 0.53 0.04 12.52 < 2e-16
3 CorteseImag_z -0.42 0.04 -10.72 < 2e-16
4 Syst_z 0.06 0.03 1.79 0.07354
5 Freq_z -0.36 0.11 -3.20 0.00142

Now that you know more about inferential statistics, we can unpack the full output
of the regression table. First, there are the familiar term and estimate columns.
Then there is the std.error column, which indicates how accurate you measure the
corresponding coefficients. The statistic column contains t-values; the values are
the estimate values divided by the respective standard errors. Finally, the column

15034-2313q-3pass-r02.indd 181 10/3/2019 5:52:51 PM

182  Inferential Statistics 3: Regression

headed p.value displays p-values, which come from looking up the t-values on the
t-distribution (see Chapter 9).

Importantly, whenever you see a coefficient table like this, you need to keep your
eyes off the p-values until you have a firm grasp of the corresponding coefficients.
If you don’t understand the meaning of a particular coefficient, you may draw the
wrong conclusions from the corresponding hypothesis test. This is particularly tricky
when dealing with interactions (Chapter 8). Let’s focus on the SER column for the
time being to demonstrate the logic of these hypothesis tests. The p-value is very low
(<2e-16), which translates into the following statement: ‘Assuming that the SER
slope is 0, the actually observed slope (+0.53) or any slope more extreme than that is
very unexpected.’

What’s most important for us right now is that you can use the standard errors
to compute 95% confidence intervals for each regression coefficient. This is done
by taking the estimate column and spanning a window of 1.96 times the stand-
ard error around this estimate (see Chapter 9). For the SER predictor, this interval
is 0 53 1 96 0 04 0 53 1 96 0 04. . * . , . . * . ,− +[] which yields the 95% confidence interval
[45,61] (with a little rounding).

When reporting the results of a regression model, it is conventional to report the
coefficient estimate as well as the standard error. In my own papers, I often write state-
ments such as the following: ‘SER was positively associated with iconicity (+ 0.53,
SE = 0.04, p < 0.001)’. I’d perhaps even describe the results in more detailed, concep-
tually oriented language: ‘for each increase in sensory experience rating by one stand-
ard deviation, iconicity ratings increased by 0.53 (b = 0.53, SE= 0.04, p < 0.001)’.

Figure 11.1 shows a coefficient plot, otherwise known as ‘dot-and-whisker plot’,
which plots each coefficient of the iconicity model with its corresponding 95% con-
fidence interval. Essentially, this is a graphical display of a coefficient table. With its
focus on confidence intervals, this plot encourages people to think about interval esti-
mates, rather than just the point estimates for each regression slope (Cumming, 2012,
2014). This acts as a visual reminder that the point estimate is unlikely to capture the
population parameter exactly.

Figure 11.1. � Point estimates of the regression coefficients (black squares) and their 95%
confidence intervals

15034-2313q-3pass-r02.indd 182 10/3/2019 5:52:52 PM

Inferential Statistics 3: Regression  183

Let us create such a plot in R. First, handily, the tidy() function from the broom
package can be used to create an output with 95% confidence intervals for each regres-
sion coefficient when specifying the argument conf.int = TRUE. In addition,
the code below uses the filter() function to get rid of the row with the intercept,
which we don’t want to plot in this case.

mycoefs <- tidy(icon_mdl_z, conf.int = TRUE) %>%
 filter(term != '(Intercept)')

This tibble can then be used to create a dot-and-whisker plot, which will look simi-
lar to Figure 11.1, barring some differences to be explained below. This code may at
first sight seem counterintuitive because of the use of coord_flip(). As the name
suggest, this function flips the coordinates of a plot. The original x-axis becomes the
new y-axis, and the original y-axis becomes the new x-axis. If this is confusing to you,
run the code without the coord_flip() layer. This helps to understand why the
term column is first mapped onto the x-axis, and why the estimates and the upper and
lower bound of the confidence interval are mapped onto the y-axis, even though they
ultimately end up on the x-axis thanks to coord_flip().

mycoefs %>% ggplot(aes(x = term, y = estimate)) +
 geom_point() +
 geom_errorbar(aes(ymin = conf.low, ymax = conf.high),
 width = 0.2) +
 geom_hline(yintercept = 0, linetype = 2) +
 coord_flip() + theme_minimal()

This plot leaves a lot to be desired. Perhaps most importantly, the plot would look
less ‘random’ if the coefficients were ordered in terms of their size, as is the case in
Figure 11.1. This can be done by converting the term column into a factor, so that
you can hand-specify a particular order of levels. The following code sorts the coef-
ficient table in ascending order using the arrange() function and extracts the term
column. The resulting pred_order vector contains the names of the slopes sorted
by the size of the corresponding estimates. Then, the factor() function is used to
transform the term column into a factor with the specified level order.

Sort tibble by estimate and extract order of terms:

pred_order <- arrange(mycoefs, estimate)$term

pred_order

[1] "CorteseImag_z" "Freq_z" "Syst_z" "SER_z"

mycoefs <- mutate(mycoefs,
 term = factor(term, levels = pred_order))

15034-2313q-3pass-r02.indd 183 10/3/2019 5:52:53 PM

184  Inferential Statistics 3: Regression

Now rerun the ggplot() command above and you will have a nicely sorted coef-
ficient plot, as in Figure 11.1.

11.3. � Significance Tests with Multilevel Categorical
Predictors

What about significance testing if a categorical predictor has more than two levels? Let
us revisit the modality data from Chapter 7. This analysis looked at context valence
(whether a word occurred in overall good or bad contexts) as a function of taste and
smell words. This section will expand this analysis to include all of the five senses.

Let’s load the data back into your current R session.

senses <- read_csv('winter_2016_senses_valence.csv')

senses %>% print(n = 4)

A tibble: 405 x 3
 Word Modality Val
 <chr> <chr> <dbl>
1 abrasive Touch 5.40
2 absorbent Sight 5.88
3 aching Touch 5.23
4 acidic Taste 5.54
... with 401 more rows

senses_mdl <- lm(Val ~ Modality, data = senses)

Let’s look at the coefficient table. The following code uses rounding to facilitate
discussion.

tidy(senses_mdl) %>%
 mutate(estimate = round(estimate, 2),
 std.error = round(std.error, 2),
 statistic = round(statistic, 2),
 p.value = format.pval(p.value, 4))

 term estimate std.error statistic p.value
1 (Intercept) 5.58 0.02 295.31 < 2.2e-16
2 ModalitySmell -0.11 0.06 -1.93 0.05489
3 ModalitySound -0.17 0.04 -4.64 4.663e-06
4 ModalityTaste 0.23 0.04 5.30 1.958e-07
5 ModalityTouch -0.05 0.04 -1.21 0.22688

When interpreting the coefficient output, you have to remind yourself of the refer-
ence level, which is Sight in this case. The p-values in the right-hand column then
correspond to the null hypothesis that the difference between Sight and Smell is
equal to 0, that the difference between Sight and Sound is equal to 0, and so on.

15034-2313q-3pass-r02.indd 184 10/3/2019 5:52:53 PM

Inferential Statistics 3: Regression  185

Thus, the coefficient table only presents a very partial overview of the differences in
the study.

To test the overall effect of sensory modality, you can perform a comparison of the
model with Modality to a model without this predictor. In this particular case, the
comparison model, which we can call the ‘null model’, is an intercept-only model
because there are no other predictors. When doing this comparison, you are looking to
see whether your model captures any variance in valence measures compared to the
null model, what is sometimes called an ‘omnibus test’.

To do this in R, let’s first create the null model. Here it comes in handy to remember
that ‘1’ is a placeholder for the intercept.

senses_null <- lm(Val ~ 1, data = senses)

Next, the anova() function can be used for model comparison. The name
of this function comes from ‘analysis of variance’ (ANOVA). This basic signifi-
cance test assesses the variance that can be attributed to a factor of interest (such as
Modality) against the overall variance. In the present case, this is equivalent to per-
forming a model comparison of the model with the factor of interest against a model
without the factor of interest. If the two models to be compared only differ in one predic-
tor, then the difference in how much variance each model captures is due to that predictor.

Perform model comparison:

anova(senses_null, senses_mdl)

Analysis of Variance Table
Model 1: Val ~ 1
Model 2: Val ~ Modality
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 404 33.089
2 400 28.274 4 4.8145 17.028 6.616e-13 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You could report the results of this ‘F-test’ as follows: ‘There was a statistically
reliable effect of modality (, . , .)

,
F p4 400 17 03 0 0001() = < . Whereas t is a statistic

used for group differences (t-tests) and regression coefficients, F is for comparing
variances. Just like t, F has its own distribution under the null hypothesis that can be
used to derive p-values. For the modality effect, the F-value is 17.03, which leads to a
p -value much below 0.05. The numbers 4 and 400 are the ‘degrees of freedom’. The

number 400 corresponds to the total number of independent data points in this data-
set.2 The number 4 is the difference in the number of estimated parameters between

2	 This number is always lower than the number of actual data points for reasons that I won’t go into
here. But, in general, the more parameters you estimate, the more degrees of freedom you lose.

15034-2313q-3pass-r02.indd 185 10/3/2019 5:52:55 PM

186  Inferential Statistics 3: Regression

the two models. The full model senses_mdl contains four more coefficients than
the null model senses_null, which only contains an intercept.

In the case of having only one predictor, you can also use glance() to inter-
rogate the overall model performance. The F-statistic and p-value in this output
are the same as in the model comparison performed with anova(). This is not
the case anymore when you have a model with multiple predictors. In that case,
glance() performs a model comparison (F-test) of the entire model (including
all predictors) against the model without any predictors (null model), which means
that you can’t associate p-values with any specific predictors anymore. You can
paraphrase this comparison as asking the following question: assuming that the
full model and the null model perform equally well (the null hypothesis), how
surprising is the amount of sample variance explained by the full model? Or, more
informally: how well do all predictors together capture variance in the response?

glance(senses_mdl)

 r.squared adj.r.squared sigma statistic p.value
1 0.1455037 0.1369588 0.2658678 17.02801 6.616243e-13
 df logLik AIC BIC deviance df.residual
1 5 -35.62837 83.25674 107.2801 28.27428 400

So, you now know how to interpret the glance() output, which relates to the
overall model performance. If you wanted to perform significance tests for specific
multilevel predictors, you can use anova() for model comparison. In that case, you
have to construct a model with and a model without the predictor in question. If you
are not dealing with multilevel predictors, these extra steps won’t be necessary. In the
case of continuous and binary categorical predictors, you can simply rely on the sig-
nificance tests that are reported in the coefficient output of the linear model.

In some fields, especially psychology, researchers are expected to assess the sig-
nificance of all pairwise comparisons, in this case, sight versus sound, sight versus
touch, sight versus taste, and so on. When doing this, you have to keep the multiple
comparisons problem in mind (see Chapter 10): the more tests a researcher conducts,
the more likely it is that any of these tests is significant. Let’s perform a full sweep of
pairwise comparisons for the senses data.

There are loads of packages that make it easy for you to compute pairwise com-
parisons. One particularly useful package for this is emmeans (Lenth, 2018). The
following runs pairwise comparisons for all levels of the Modality predictor. The
adjust argument specifies which particular adjustment method is used, in this case,
Bonferroni correction.

library(emmeans)

emmeans(senses_mdl, list(pairwise ~ Modality),
adjust = 'bonferroni')

$'emmeans of Modality'
 Modality emmean SE df lower.CL upper.CL
 Sight 5.579663 0.01889440 400 5.542518 5.616808

15034-2313q-3pass-r02.indd 186 10/3/2019 5:52:55 PM

Inferential Statistics 3: Regression  187

 Smell 5.471012 0.05317357 400 5.366477 5.575546
 Sound 5.405193 0.03248092 400 5.341338 5.469047
 Taste 5.808124 0.03878081 400 5.731884 5.884364
 Touch 5.534435 0.03224121 400 5.471052 5.597818

Confidence level used: 0.95

$'pairwise differences of Modality'
 contrast estimate SE df t.ratio p.value
 Sight - Smell 0.10865148 0.05643072 400 1.925 0.5489
 Sight - Sound 0.17447036 0.03757671 400 4.643 <.0001
 Sight - Taste -0.22846083 0.04313872 400 -5.296 <.0001
 Sight - Touch 0.04522812 0.03736969 400 1.210 1.0000
 Smell - Sound 0.06581888 0.06230922 400 1.056 1.0000
 Smell - Taste -0.33711231 0.06581321 400 -5.122 <.0001
 Smell - Touch -0.06342336 0.06218459 400 -1.020 1.0000
 Sound - Taste -0.40293120 0.05058618 400 -7.965 <.0001
 Sound - Touch -0.12924225 0.04576577 400 -2.824 0.0498
 Taste - Touch 0.27368895 0.05043260 400 5.427 <.0001

P value adjustment: bonferroni method for 10 tests

The function also spits out predictions, which will be covered later in this chapter.
What concerns us now is the section that’s headed $'pairwise differences
of Modality'. After correction, there are six significant pairwise differences:
sight/sound, sight/taste, smell/taste, sound/taste, sound/touch, and taste/touch.

However, I have to admit, I’m not a fan of the practice of performing tests for all
comparisons within a study, even if these tests are Bonferroni-corrected. In particu-
lar, in the case of this dataset, I cannot think of any theoretical reasons for compar-
ing the emotional valence of sight words and sounds words, or touch words and
sight words. When there’s no theoretical reason to perform a specific comparison,
the analysis is essentially an exploratory one (see Chapter 16 for more on confirma-
tory versus exploratory analyses). In my paper on this data (Winter, 2016), I review
literature which suggests that taste and smell words should be different from each
other (taste words are overall more positive than smell), but the literature on this
topic is not rich enough to allow making specific predictions for other pairwise
contrasts. So, in the analysis reported in the paper, I opted to only perform a com-
parison between taste and smell words (exactly the analysis that you conducted in
Chapter 7), and I did not correct the p-value of this result as it was just a single test.

There are other reasons for my dislike of performing a full suite of pairwise com-
parisons. For example, it is a philosophically thorny issue whether the significance of
a specific binary contrast—say, A versus B—should depend on having performed a
hypothesis test for a completely unrelated comparison, C versus D. In addition, there
is the issue of statistical power: the more tests one conducts, the stricter Bonferroni
correction becomes, which leads to a higher likelihood of committing a Type II error (a
false negative). My final objection against performing all pairwise comparisons is that
this practice buys into the common belief that all results should have p-values attached.
There is already too much emphasis on these numbers, and performing pairwise compar-
isons furthers the practice of solely relying on p-values to make judgments about data.

15034-2313q-3pass-r02.indd 187 10/3/2019 5:52:55 PM

188  Inferential Statistics 3: Regression

Rather than performing a series of binary significance tests, I recommend interpret-
ing your model with respect to the coefficients, the predictions, the effect sizes, etc.
These are the things that are scientifically much more informative. In addition, as
mentioned in Chapter 10, I recommend keeping the number of tests to be conducted
low at the design phase of your study, formulating motivated hypotheses before you
even collect the data, and then testing only these hypotheses.

11.4. �� Another Example: The Absolute Valence of Taste
and Smell Words

As another example of my general approach to these sorts of problems, I will walk you
through one more analysis from Winter (2016). Besides the prediction that taste words
should be more positive than smell words, the literature on this topic affords making the
prediction that taste and smell words together should be overall more emotionally engag-
ing, or evaluative, than words for the other senses. To assess this, I used a measure I called
‘absolute valence’. Remember that after z-scoring the data, quantities are expressed in
terms of deviations from the mean. If one takes the absolute value (see Chapter 1.2) of this
z-transformed measure, negative words are ‘flipped over’ and become positive. The result-
ing absolute valence measure then expresses the degree to which words assume extreme
positions on the context valence scale—regardless of whether they are extreme in a ‘good’
or a ‘bad’ way. Words with low absolute valence scores are overall more neutral.

Let’s reconstruct this measure and perform an omnibus test:

Standardize valence and take the absolute value:

senses <- mutate(senses,
 Val_z = scale(Val),
 AbsVal = abs(Val_z))

Omnibus test:

abs_mdl <- lm(AbsVal ~ Modality, data = senses)

Model comparison without specifying null model directly:

anova(abs_mdl)

Analysis of Variance Table

Response: AbsVal
 Df Sum Sq Mean Sq F value Pr(>F)
Modality 4 14.611 3.6527 9.9715 1.061e-07 ***
Residuals 400 146.524 0.3663

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that if the anova() function is wrapped around the model object, it auto-
matically performs a test against the null model (glance() reports the same test). The

15034-2313q-3pass-r02.indd 188 10/3/2019 5:52:55 PM

Inferential Statistics 3: Regression  189

Modality factor is indicated to be significant for the new absolute valence measure. This
is an important result that was reported in Winter (2016); however, the test doesn’t tell us
which of the five senses are significantly different from each other. Rather than perform-
ing all pairwise comparisons, I opted to only test the theoretically motivated hypothesis
that taste and smell words together are different from sight, touch, and sound words. The
following code achieves this by creating a new column, ChemVsRest, which separates
the ‘chemical senses’ (taste and smell) from the rest. For this, the ifelse() function
is used, which assigns the label 'Chem' to all words that satisfy the logical statement
‘Modality %in% chems’, where the chems vector contains the labels for taste and
smell words.

Create taste/smell vs. sight/sound/touch predictor:

chems <- c('Taste', 'Smell')

senses <- mutate(senses,
 ChemVsRest = ifelse(Modality %in% chems,
 'Chem', 'Other'))

Let’s check that this has worked. The following command uses the with() func-
tion to make the senses tibble available to the table() function. This avoids hav-
ing to re-type ‘$senses’ multiple times (see Chapter 5.6).

with(senses, table(Modality, ChemVsRest))

 ChemVsRest
Modality Chem Other
 Sight 0 198
 Smell 25 0
 Sound 0 67
 Taste 47 0
 Touch 0 68

This works as a quick sanity check of the new ChemVsRest variable. Indeed, only
taste and smell words are coded as ‘Chem’, and all other sensory modalities are coded as
‘Other’. The new ChemVsRest variable can then be used as predictor in a linear model.

Test this predictor:

abs_mdl <- lm(AbsVal ~ ChemVsRest, data = senses)

tidy(abs_mdl)

 term estimate std.error statistic
1 (Intercept) 1.0558262 0.07289898 14.483414
2 ChemVsRestOther -0.3422975 0.08039460 -4.257718

15034-2313q-3pass-r02.indd 189 10/3/2019 5:52:55 PM

190  Inferential Statistics 3: Regression
 p.value
1 1.440064e-38
2 2.572230e-05

As you can see, this comparison is significant. The slope is negative and, since
'Chem' is the reference level (it comes first in the alphabet), this means that words
for the other senses were on average less valenced than words for the chemical senses.

In lumping sight, sound, and touch together as ‘other’, we have to recognize that
this is quite a coarse comparison. However, it is a direct test of the idea that taste and
smell together are less neutral than the other senses and, as such, it is a theoretically
motivated comparison, in contrast to a full suite of pairwise comparisons.

11.5. � Communicating Uncertainty for Categorical Predictors
Let’s stay with this data for a little longer and use the predict() function to calcu-
late predictions for each level of the Modality factor, as was already done in Chapter 7.
For this specific case, we are using the senses_mdl (the model with the valence
measure and all five senses, rather than the model with the absolute valence measure).

newpreds <- tibble(Modality =
  sort(unique(senses$Modality)))

Check:

newpreds

A tibble: 5 x 1
 Modality
 <chr>
1 Sight
2 Smell
3 Sound
4 Taste
5 Touch

Generate predictions:

fits <- predict(senses_mdl, newpreds)

fits

 1 2 3 4 5
5.579663 5.471012 5.405193 5.808124 5.534435

The object fits contains the predictions for the modalities in the newpreds tib-
ble. To compute the 95% confidence interval by hand, the standard error for the pre-
dicted means is needed. For this, rerun the predict() function with the additional
argument se.fit = TRUE. The resultant object is a named list. You can index this
list with $se.fit to retrieve the standard errors.

15034-2313q-3pass-r02.indd 190 10/3/2019 5:52:55 PM

Inferential Statistics 3: Regression  191

Standard errors for predictions:

SEs <- predict(senses_mdl, newpreds,
 se.fit = TRUE)$se.fit

SEs

 1 2 3 4 5
0.01889440 0.05317357 0.03248092 0.03878081 0.03224121

You now have two new vectors in your working environment: fits for the fitted
values, and SEs for the corresponding standard errors. Let’s put them both into the
same tibble, which makes it easier to compute the 95% confidence intervals.

CI_tib <- tibble(fits, SEs)

CI_tib

A tibble: 5 x 2
 fits SEs
 <dbl> <dbl>
1 5.58 0.0189
2 5.47 0.0532
3 5.41 0.0325
4 5.81 0.0388
5 5.53 0.0322

Now that everything is in the same tibble, mutate() can be used to compute the
95% confidence interval, which is roughly two times the standard error on both sides
of the mean (see Chapter 9.4).

Compute CIs:

CI_tib <- mutate(sense_preds,
 LB = fits – 1.96 * SEs, # lower bound
 UB = fits + 1.96 * SEs) # upper bound

CI_tib

A tibble: 5 x 4
 fits SEs LB UB
 <dbl> <dbl> <dbl> <dbl>
1 5.58 0.0189 5.54 5.62
2 5.47 0.0532 5.37 5.58
3 5.41 0.0325 5.34 5.47
4 5.81 0.0388 5.73 5.88
5 5.53 0.0322 5.47 5.60

15034-2313q-3pass-r02.indd 191 10/3/2019 5:52:55 PM

192  Inferential Statistics 3: Regression

It’s good to know how to perform these computations by hand; however, the
predict() function can actually calculate the 95% confidence interval around the pre-
dicted means automatically in one go when the argument interval = 'confidence'
is specified.3 In the output below, lwr and upr are the lower and upper bounds of the
95% confidence interval around the means, respectively.

sense_preds <- predict(senses_mdl, newpreds,
 interval = 'confidence')

sense_preds

 fit lwr upr
1 5.579663 5.542518 5.616808
2 5.471012 5.366477 5.575546
3 5.405193 5.341338 5.469047
4 5.808124 5.731884 5.884364
5 5.534435 5.471052 5.597818

The numbers are different due to rounding. However, you also need to be aware
of the fact that depending on the sample size, predict() will compute the 95%
confidence interval based on values that are slightly different from 1.96 (for reasons
that won't be discussed here). In most cases, this will not make a big difference. If you
want to be on the safe side, use the predict() function.

One more step is needed to create a plot of the means with their respective 95%
confidence intervals. To plot the categorical modality labels on the x-axis and the
predictions on the y-axis, the tibble needs to contain the modality labels in a separate
column. For this, you can bind the newpreds tibble (which contains the modal-
ity labels) together with the sense_preds predictions, using the cbind() func-
tion. This function takes two two-dimensional R objects (such as two tibbles) and
glues them together column-wise. A requirement for using this function is that the two
objects have the same number of rows, which is in fact the case here.

sense_preds <- cbind(newpreds, sense_preds)

sense_preds

A tibble: 5 x 4
 Modality fit lwr upr
 <chr> <dbl> <dbl> <dbl>
1 Sight 5.58 5.54 5.62
2 Smell 5.47 5.37 5.58
3 Sound 5.41 5.34 5.47

3	 You can also specify the argument to be ‘prediction’, which will compute what is called a ‘pre-
diction interval’. This interval is different from a confidence interval. Whereas the confidence interval
expresses uncertainty with respect to the means, the prediction interval expresses uncertainty with
respect to future observations. That is, the 95% prediction interval tells you what values are plausible
for the next data point sampled. Prediction intervals are always wider than confidence intervals.

15034-2313q-3pass-r02.indd 192 10/3/2019 5:52:55 PM

DolanA
Highlight
curly apostrophe please

Inferential Statistics 3: Regression  193

4 Taste 5.81 5.73 5.88
5 Touch 5.53 5.47 5.60

Finally, everything is in place to create a plot of the predicted means and their 95%
confidence intervals. The following command produces Figure 11.2 (left plot).

sense_preds %>%
 ggplot(aes(x = Modality, y = fit)) +
 geom_point() +
 geom_errorbar(aes(ymin = lwr, ymax = upr)) +
 theme_minimal()

Notice that this command defines a new set of aesthetic mappings for
geom_errorbar(). These mappings assign the y-minimum of the error bar to the
lower-bound column from the sense_preds tibble (LB), and the y-maximum of the
error bar to the upper bound (UB).

The resulting plot leaves a number of things to be desired, both from an aesthetic as
well as from a functional perspective. First, the modalities are shown in alphabetical
order. It would be much nicer to show everything in order of increasing valence, from
the most negative to the most positive modality. For this, you can recode the factor
Modality to be in the order from the least to the most positive (ascending order).
The following commands achieve this by extracting the Modality column from the
sorted tibble.

Extract ascending order:

sense_order <- arrange(sense_preds, fit)$Modality

Set factor to this order:

Figure 11.2. � Predicted context valence and 95% confidence intervals; left: unordered,
right: ordered and snazzy

15034-2313q-3pass-r02.indd 193 10/3/2019 5:52:55 PM

194  Inferential Statistics 3: Regression

sense_preds <- mutate(sense_preds,
 Modality = factor(Modality,
 levels >= sense_order))

Next, there are a number of cosmetic improvements: the x- and y-axis labels could
be increased in size to be more readable. The width of the error bars could be reduced
to decrease the overlap between the different modalities. It also makes sense to increase
the font size of the axis labels. Notice one little quirk in the command below, which
is the ‘\n’ in xlab() and ylab().The character sequence ‘\n’ is interpreted as a
line break. Including it in the axis text is a quick and dirty way of increasing the dis-
tance x-axis and y-axis labels. All of the code below produces the plot to the right of
Figure 11.2.

sense_preds %>%
 ggplot(aes(x = Modality, y = fit)) +
 geom_point(size = 4) +
 geom_errorbar(aes(ymin = lwr, ymax = upr),
 size = 1, width = 0.5) +
 ylab('Predicted emotional valence\n') +
 xlab('\nModality') +
 theme_minimal() +
 theme(axis.text.x =
 element_text(face = 'bold', size = 15),
 axis.text.y =
 element_text(face = 'bold', size = 15),
 axis.title =
 element_text(face = 'bold', size = 20))

11.6. � Communicating Uncertainty for Continuous Predictors
What about plotting predictions for a continuous predictors? Let’s revisit the English
Lexicon Project data that was discussed in Chapters 4, 5, and 6. You will now recre-
ate the plot of response times against frequency, with hand-specified 95% confidence
intervals.

Let’s redo the first steps of the analysis:

ELP <- read_csv('ELP_frequency.csv')

Log-transform frequency predictor:

ELP <- mutate(ELP, Log10Freq = log10(Freq))

ELP

15034-2313q-3pass-r02.indd 194 10/3/2019 5:52:55 PM

Inferential Statistics 3: Regression  195

A tibble: 12 x 4
 Word Freq RT Log10Freq
 <chr> <int> <dbl> <dbl>
 1 thing 55522 622. 4.74
 2 life 40629 520. 4.61
 3 door 14895 507. 4.17
 4 angel 3992 637. 3.60
 5 beer 3850 587. 3.59
 6 disgrace 409 705 2.61
 7 kitten 241 611. 2.38
 8 bloke 238 794. 2.38
 9 mocha 66 725. 1.82
10 gnome 32 810. 1.51
11 nihilism 4 764. 0.602
12 puffball 4 878. 0.602

Create linear model:

ELP_mdl <- lm(RT ~ Log10Freq, ELP)

Next, you need to define the data to generate predictions for. Let’s generate a
sequence of log frequencies from 0 to 5.

newdata <- tibble(Log10Freq = seq(0, 5, 0.01))

This can be used to compute predictions with predict(). As in the previous
example, interval = 'confidence' ensures that 95% confidence interval
around the predictions is computed.

preds <- predict(ELP_mdl, newdata,
   interval = 'confidence')

head(preds)

 fit lwr upr
1 870.9054 780.8520 960.9588
2 870.2026 780.4127 959.9926
3 869.4999 779.9732 959.0266
4 868.7971 779.5334 958.0608
5 868.0943 779.0935 957.0952
6 867.3916 778.6534 956.1298

For plotting purposes, the fitted values should be stored in the same R object.

preds <- cbind(newdata, preds)

head(preds)

15034-2313q-3pass-r02.indd 195 10/3/2019 5:52:55 PM

196  Inferential Statistics 3: Regression
 Log10Freq Log10Freq fit lwr upr
1 0.00 0.00 870.9054 780.8520 960.9588
2 0.01 0.01 870.2026 780.4127 959.9926
3 0.02 0.02 869.4999 779.9732 959.0266
4 0.03 0.03 868.7971 779.5334 958.0608
5 0.04 0.04 868.0943 779.0935 957.0952
6 0.05 0.05 867.3916 778.6534 956.1298

Finally, everything is in place for plotting. The following plot (Figure 11.3) will
be your first ggplot2 that draws from more than one tibble—namely, the tibble
of the actual data and the tibble of the predictions. Notice how, in the code below,
geom_text() is specified to draw from a different tibble (ELP) than the other
geoms, which draw from preds. The geom_ribbon() is used to plot the
confidence region, with aesthetic mappings for the lower (ymin) and upper (ymax)
boundary of the region. The alpha argument ensures that the confidence region is
transparent. Finally, notice that the text is plotted after the ribbon layer so that the text
is not occluded by the ribbon.

preds %>% ggplot(aes(x = Log10Freq, y = fit)) +
 geom_ribbon(aes(ymin = LB, ymax = UB),
 fill = 'grey', alpha = 0.5) +
 geom_line() +
 geom_text(data = ELP, aes(y = RT, label = Word)) +
 theme_minimal()

Figure 11.3. � Scatterplot and regression fit, with the confidence region created with
geom_ribbon()

15034-2313q-3pass-r02.indd 196 10/3/2019 5:52:55 PM

Inferential Statistics 3: Regression  197

How do you interpret the confidence region? As mentioned before, when esti-
mating the population intercept and slope, there is always going to be variation
between samples. Anytime that you draw a different sample of words (or of speak-
ers), your coefficient estimates will differ, and so will the predictions based on
these coefficients. I invite you to imagine lots of possible lines that you could have
obtained, each one based on a slightly different intercept and a slightly different
slope (sampling variation). We expect most of these lines to go through the gray
region spanned by the 95% confidence interval that surrounds the regression line.
This is the regression equivalent of the “dance of the confidence intervals” (Cum-
ming, 2012, 2014) discussed in Chapter 9. Thus, you can use the confidence region
as a visual reminder of the fact that there’s uncertainty in the actual position of the
regression line.

11.7. � Chapter Conclusions
This chapter discussed the interpretation of the significance of regression coefficients.
In addition, the chapter told you how to extract information about the uncertainty of
regression coefficients and the uncertainty of predictions from model objects in R.
You created a dot-and-whisker plot of regression slopes, with confidence intervals
around the regression coefficients. In addition, you calculated the predictions with
confidence intervals for various types of models in R. The skills discussed in this
chapter give you greater flexibility in plotting your models. The best plots usually
combine data and model.

11.8. � Exercise

11.8.1.  �Exercise 1: Creating a (Bad) Coefficient Plot
of Unstandardized Estimates

In this chapter, you created a dot-and-whisker plot for standardized regression coef-
ficients of the iconicity model. What if you used the unstandardized regression coef-
ficients instead? Recreate the model without the predictors labeled ‘_z’, then plot the
coefficients. What’s bad about this plot? This should drive home some of the points
made in Chapter 5 about why it’s important to standardize in some contexts.

15034-2313q-3pass-r02.indd 197 10/3/2019 5:52:55 PM

12.1. � Motivating Generalized Linear Models
All of the models considered up to this point dealt with continuous response vari-
ables. Chapter 7 showed you how to incorporate categorical predictors. But what if
the response itself is categorical?

Figure 12.1 is an example of such a categorical response. This is hypothetical data
(but inspired by a real study: Schiel, Heinrich, & Barfüsser, 2012) in which the pres-
ence or absence of speech errors is modeled as a function of blood alcohol concentra-
tion (BAC): In this case, ‘0’ corresponds to ‘no speech error’, and ‘1’ corresponds to
‘speech error’. The plot has a little y-scatter around the values 0 and 1 just to increase
visibility of the individual points. The figure shows that on average, drunk people
make more speech errors than sober people.

The curve in Figure 12.1 indicates the predicted probability of observing a speech
error, based on what is called a ‘logistic regression’ model. This chapter will teach
you how to fit such a model. Logistic regressions are ubiquitous in linguistics. For
example, two-alternative forced choice responses or accuracy in psycholinguistics is
often modeled using logistic regression. Other applications include: the presence or
absence of a sociolinguistic variable (Drager & Hay, 2012; Tagliamonte & Baayen,
2012), the presence or absence of case marking (Bentz & Winter, 2013), or the choice
between two types of syntactic constructions (Bresnan, Cueni, Nikitina, & Baayen
2007; Bresnan & Hay, 2008).

12.2. � Theoretical Background: Data-Generating Processes
Before getting to logistic regression per se, I need to rewire your brain with respect to
regression modeling. Remember that Chapter 4 claimed that in regression, the error is
assumed to be normally distributed? It was also mentioned in Chapter 4 that this does
not mean that the response variable itself has to be normally distributed. To clarify this,
have a look at Figure 12.2. The thick solid line exhibits positive skew, but this distribu-
tion can actually arise from multiple normal distributions, shown by the dashed lines.

Fitting a model of the form ‘y ~ Group’ to this data will yield a prediction for
each group. Crucially, the deviations from these predicted means, the residuals, will
be normally distributed. This reinforces the idea that the normality assumption is not
about the response variable per se, but about the residuals. There are situations in
which the response looks skewed, but the normality assumption is satisfied.

12	 Generalized Linear Models 1
Logistic Regression

15034-2313q-3pass-r02.indd 198 10/3/2019 5:52:55 PM

Generalized Linear Models 1: Logistic Regression  199

Figure 12.1. � Speech errors as a function of blood alcohol concentration, treated as a binary
categorical variable with superimposed logistic regression fit (bold curve);
the white square indicates the intercept; the square in the middle indicates
the point where making a speech error becomes more likely than not making
a speech error

Now we get to rewiring your brain. Another way to think about this is that the nor-
mality assumption is not about the residuals per se, but about the process that has gen-
erated the data. Specifically, when fitting a linear model, you assume that the response
variable y has been generated by a Gaussian (normal) process. Thus, the statement ‘we
assume Gaussian error’ (residuals) and the statement ‘we assume the data has been
generated by a Gaussian process’ go hand in hand. If values are drawn from an under-
lying normal distribution, the residuals will also be normally distributed.

Figure 12.2b encapsulates these ideas. First, let’s unpack the y Normal~ (μ,σ)
part, ignoring the subindices (i) for the time being. This formula can be paraphrased
as y is assumed to be generated by a normally distributed process with the mean
μ and the standard deviation σ’. In having been generated by a process that is nor-
mally distributed, the residuals are also going to be normally distributed around
μ, with the spread given by σ.

The mean μ can then be conditioned on one or more predictors, such as x. The sub-
index i in Figure 12.2b is a placeholder, representing the fact that there are different
values of x. For example, the first data point is xi = 1, the second is xi = 2, and so on. You
can think of i as a counter variable, counting through the sequence of data points. For
each data point, there is a different i. The subindex does something important in the
formula, which is to make the y -values depend on the x -values. For example, x1 may
assume a different value from x2, which then results in a different value for y1 compared
to y2. In essence, this formula predicts a shifting mean; namely, a mean that shifts as a
function of the x-values. How it shifts depends on the slope β1. Notice that I am using
Greek letters because everything said here relates to assumptions about the parameters.
It is the job of regression to supply the corresponding estimates (b1for β1, and so on).

15034-2313q-3pass-r02.indd 199 10/3/2019 5:52:57 PM

DolanA
Cross-Out

200  Generalized Linear Models 1: Logistic Regression

Figure 12.2. � (a) Pooling multiple normal distributions (dashed lines) together may create
the appearance of positive skew (thick solid line); (b) in linear regression, the
data-generating process is assumed to be normally distributed

Essentially, everything is just as before—it’s just that I invited you to think about
the process that has generated the data. This way of thinking unlocks new poten-
tial. What if the process that has generated the data wasn’t normally distributed? The
‘generalized linear framework’ generalizes the linear model framework to incorporate
data-generating processes that follow any distribution. The first type of generalized
linear model (GLM) that you will learn about is logistic regression, which assumes the
response y to be binomially distributed, as shown in E12.1.

y binomial N p~ ,=()1 � (E12.1)

The binomial distribution has two parameters, N and p. N is the ‘trial’ parameter;
it describes how many trials are conducted. p is the probability parameter, and in this
case, it describes the probability of y being either 0 and or 1. For our purposes, one
parameter can be fixed, namely N = 1. In that case, the binomial distribution charac-
terizes the probability of observing a single event, such as whether a speech error has
occurred or not. In this chapter, you will use logistic regression exclusively to model
data at the individual trial level, which is why you don’t have to worry about the N
parameter from now on. In fact, the binomial distribution with N set to 1 has a special
name, it is called the ‘Bernoulli distribution’. Thus, the formula E12.1 can be simpli-
fied to the following:

y bernoulli p~ () � (E12.2)

In other words, the way we are going to use it here, logistic regression assumes y
to be generated by a process that follows a Bernoulli distribution. Figure 12.3a shows
what probabilities the Bernoulli distribution assigns to the values ‘0’ and ‘1’ for three
different parameters, p = 0.2, p = 0.5, and p = 0.8.

In the context of logistic regression, you are generally interested in modeling p
as a function of one or more predictors. For example, you might want to model the

15034-2313q-3pass-r02.indd 200 10/3/2019 5:53:00 PM

Generalized Linear Models 1: Logistic Regression  201

Figure 12.3. � (a) The Bernoulli distribution for three different values of the parameter p,
(b) logistic regression: assuming the response to be Bernoulli distributed and
conditioning the parameter p on a set of predictors

probability of observing a speech error, p y speecherror(�=), as a function of blood
alcohol concentration. You might want to model the probability of passing a second
language test, p y pass(=), as a function of language background, age, and educa-
tional background. Or you might want to model the probability of a participant mark-
ing a word as perceptually prominent, p y prominent(=), as a function of several
acoustic variables, such as pitch and loudness (Baumann & Winter, 2018).

So, ultimately, you would want something like ‘ p xi i� �� �0 1 * ,, that is, you want
different probabilities for different values of x. However, there’s a snatch. The equation
‘ � �0 1� * ,xi can predict any continuous value, but probabilities have to be between
0 and 1. Thus, you need a way of constraining what regression can predict; you need
to ‘crunch’ the output of ‘ � �0 1� * ,xi to fit into the interval [0,1]. For many areas
of science (including mathematics, statistics, computer science, artificial intelligence
research), there’s a certain ‘go-to’ function that is used when a continuous measure
has to be compressed to the interval [0,1]. This function is the ‘logistic function’, and
it lends logistic regression its name. So, rather than modeling the parameter p directly
as a function of the predictors, the output of the predictive equation is transformed via
the logistic, as shown in Figure 12.3b.

Figure 12.4 displays the effects of the logistic function. Notice how negative num-
bers such as –1 (bottom gray line) are positive and within the interval [0,1] after being
transformed by the logistic function.

The following applies the logistic function to the example values –2, 0 and +2.

lo istic

lo istic

lo istic

g

g

g

−() ≈

() =

+() ≈

2 0 12

0 0 5

2 0 88

.

.

.

Notice that, just as Figure 12.4 suggests, the output of this function does not exceed
the interval [0,1]. Notice furthermore that applying the logistic function to the numeri-
cal value 0 yields 0.5, which corresponds to the dashed line in Figure 12.4. In R, the
logistic function is implemented in the command plogis().

15034-2313q-3pass-r02.indd 201 10/3/2019 5:53:04 PM

202  Generalized Linear Models 1: Logistic Regression

Figure 12.4. � (a) A linear relationship between y and x; transforming the y s with the logis-
tic function (b) restricts them to the interval between 0 and 1; the dashed line
corresponds to a probability of 0.5 (graph inspired by McElreath, 2016)

plogis(-2)

[1] 0.1192029

plogis(0)

[1] 0.5

plogis(2)

[1] 0.8807971

I welcome you to plug in more numbers to get a feel for this function. Even if you
supply very extreme values such as 10,000 or –10,000 to plogis(), it will always
return a number between 0 and 1.

12.3. � The Log Odds Function and Interpreting Logits
There’s one more bit of math you need to learn about before you can start fitting your
own logistic regression models. You need to know about ‘log odds’, otherwise called
‘logits’. These are defined as follows:

log odds log=
−







p
p1

� (E12.3)

Here, log function is the natural logarithm (to the base e). The term inside the brack-
ets are the odds, which are:

odds =
−
p

p1
� (E12.4)

The odds express the probability of an event occurring (p) over the probability of
an event not occurring (1 − p). You are actually familiar with the logic of odds from

15034-2313q-3pass-r02.indd 202 10/3/2019 5:53:06 PM

Generalized Linear Models 1: Logistic Regression  203

Table 12.1. � Representative probability, odds and log odds values; values rounded to two
digits; notice that a probability of 0.5 corresponds to log odds of 0

Probability Odds Log odds (‘logits’)

0.1 0.11 to 1 –2.20
0.2 0.25 to 1 –1.39
0.3 0.43 to 1 –0.85
0.4 0.67 to 1 –0.41
0.5 1 to 1   0.00
0.6 1.5 to 1 +0.41
0.7 2.33 to 1 +0.85
0.8 4 to 1 +1.39
0.9 9 to 1 +2.20

everyday language. Almost certainly, you will have heard an expression such as ‘the
odds are one to one’, which describes a 50% chance of an event occurring. You can
express this statement by plugging p = 0.5 into equation E12.4, which yields:

0 5
1 0 5

0 5
0 5

1.
.

.

.−
= = � (E12.5)

Why are the odds in E12.4 log-transformed? When you transform odds with the
logarithm, you get a continuous scale that ranges from negative infinity to positive
infinity. Table 12.1 shows the correspondence between probability, odds, and log odds
for some representative values.

Log odds take considerable time to get used to—don’t worry, there’ll be lots of
practice. A good thing to remember about log odds is that a log odds value of 0 cor-
responds to a probability of 0.5, and that positive log odds correspond to p > 0.5 and
negative log odds correspond to p < 0.5. For example, if you are modeling the occur-
rence of speech errors, then a positive log odds value indicates that a speech error is
more likely to occur than not.

The whole point of talking about log odds is that this puts probabilities onto a continuous
scale, which is more amenable to being modeled with regression. Thus, logistic regression
actually predicts log odds, as in E12.6. The shorthand ‘logit’ is used for ‘log odds’.

lo it p xi ig � � � �� �0 1 * � (E12.6)

When wanting to report the model in terms of probabilities, you need to apply the logis-
tic regression equation to the model’s log odds predictions. The logistic function is the
inverse of the log odd function.1 Being each other’s inverses, the log odds (‘logit’) func-
tion and the logistic function undo each other’s effects, which is shown in Figure 12.5.2

1	 Because the logistic is the inverse of the log odd, other courses use the notation lo itg −1 for the
logistic function, where the superscript –1 stands for ‘inverse’.

2	 You already know one pair of functions that are each other’s inverse: the logarithm and the expo-
nential function (Chapter 5). You can ‘undo’ the logarithmic transform by subsequently exponenti-
ating. Likewise, you can ‘undo’ an exponentiation by subsequently applying the logarithm.

15034-2313q-3pass-r02.indd 203 10/3/2019 5:53:07 PM

204  Generalized Linear Models 1: Logistic Regression

Figure 12.5. � The correspondence between probabilities and logits; the logistic function
crunches logits into the range [0,1]; the logit function expresses probabilities
on a scale that ranges from negative infinity to positive infinity

If you are new to logistic regression and not so mathematically inclined, the last
section may have been hard. That’s OK. The following presents three applications of
logistic regression, and in walking you through the same procedures again and again,
the correspondence between probabilities and log odds will eventually sink in.

12.4. � Speech Errors and Blood Alcohol Concentration
Let’s use the (artificial) blood alcohol concentration data shown in Figure 12.1 to fit
your first logistic regression model. The data is contained in the file ‘speech_errors.csv’.

library(tidyverse)
library(broom)

alcohol <- read_csv('speech_errors.csv')

alcohol

A tibble: 40 x 2
 BAC speech_error
 <dbl> <int>
 1 0.0737 0
 2 0.0973 0
 3 0.234 0
 4 0.138 1
 5 0.0933 0
 6 0.262 1
 7 0.357 0
 8 0.237 1
 9 0.352 1
10 0.379 1
... with 30 more rows

The column BAC contains the blood alcohol concentration predictor. The column
speech_error contains information about the presence (1) or absence (0) of a
speech error. This will be the response variable of your logistic regression model. The
function for fitting a logistic regression model is called glm() (for generalized linear

15034-2313q-3pass-r02.indd 204 10/3/2019 5:53:07 PM

Generalized Linear Models 1: Logistic Regression  205

model). You specify your model formula as before, but in addition, you need to specify
the assumed distribution of the data-generation process. This is done via the family
argument. The name of this argument, ‘family’, comes from the fact that you can think
of any basic distributional shape (e.g., uniform, Gaussian, binomial) as a family of dis-
tributions. This is because changing the parameters allows you to create lots of versions
of the same distribution. You specify the family to be ‘binomial’ (remember that the
Bernoulli distribution is a specific case of the binomial distribution).3

alcohol_mdl <- glm(speech_error ~ BAC,
 data = alcohol, family = 'binomial')

Now that you have the fitted model stored in the object alcohol_mdl, you can
use the broom function tidy() to retrieve the coefficient table—just as you’re used
to from linear regression.

tidy(alcohol_mdl)

 term estimate std.error statistic p.value
1 (Intercept) -3.643444 1.123176 -3.243878 0.0011791444
2 BAC 16.118147 4.856267 3.319041 0.000903273

As always, most of our time should be devoted to interpreting the estimate col-
umn. In this case, the estimates are given in log odds. The first thing to look for is the
sign of each coefficient. Notice that the slope of BAC is positive, which means that an
increase in blood alcohol concentration corresponds to an increase in the log odds of
observing a speech error. Notice furthermore that the sign of the intercept is negative,
which indicates that for x = 0, it is the case that p(y speech error=) < 0.5. In other
words, sober people make a speech error less than 50% of the time. The intercept is
represented by the white square in Figure 12.1.

The fact that the p-value for the BAC coefficient is significant can be translated
into the following statement: ‘Assuming that the slope BAC = 0, obtaining a slope of
16.11 or more extreme than that is quite unlikely.’ You could report this result as fol-
lows: ‘There was a reliable effect of BAC (logit coefficient: +16.11, SE = 4.86, z=3.3,
p = 0.0009).’ Notice that the test statistic in the case of logistic regression coefficient
turns out to be z rather than t (for reasons that I won’t go in here).

To get rid of the confusing log odds, let’s calculate some probabilities. Let’s first
extract the coefficients.

intercept <- tidy(alcohol_mdl)$estimate[1]

slope <- tidy(alcohol_mdl)$estimate[2]

intercept

[1] -3.643444

3	 When using glm(), the arguments family = 'binomial', family = binomial(), and
family = binomial(link = 'logit') are equivalent.

15034-2313q-3pass-r02.indd 205 10/3/2019 5:53:08 PM

206  Generalized Linear Models 1: Logistic Regression

slope

[1] 16.11815

Let’s compute the log odds values for a blood alcohol concentration of 0% (com-
pletely sober) and for a blood alcohol concentration of 0.3% (really drunk).

intercept + slope * 0 # BAC = 0

[1] -3.643444

intercept + slope * 0.3 # BAC = 0.3

[1] 1.192

These are the predicted log odds for the corresponding blood alcohol concentra-
tions. To get the predicted probabilities of making a speech error, apply the logistic
function plogis() to these log odds.

plogis(intercept + slope * 0)

[1] 0.02549508

plogis(intercept + slope * 0.3)

[1] 0.7670986

For sober people, the predicted probability of a speech error is 0.025. Thus, given
this model, you expect speech errors to occur on average about 2.5% of the time. For
drunk people, the predicted probability is 0.77. Thus, you expect speech errors to
occur on average about 77% of the time.

To recreate Figure 12.1, use the familiar seq() function to generate a series of
x-values. Then use these x-values to generate predicted probabilities.

BAC_vals <- seq(0, 0.4, 0.01)

y_preds <- plogis(intercept + slope * BAC_vals)

Let’s put both vectors into a tibble.

mdl_preds <- tibble(BAC_vals, y_preds)

mdl_preds

15034-2313q-3pass-r02.indd 206 10/3/2019 5:53:08 PM

Generalized Linear Models 1: Logistic Regression  207

A tibble: 41 x 2
 BAC_vals y_preds
 <dbl> <dbl>
 1 0 0.0255
 2 0.01 0.0298
 3 0.02 0.0349
 4 0.03 0.0407
 5 0.04 0.0475
 6 0.05 0.0553
 7 0.06 0.0644
 8 0.07 0.0748
 9 0.08 0.0867
10 0.09 0.100
... with 31 more rows

Notice how the values in the y_preds column increase as the BAC values increase
(higher blood alcohol concentrations correspond to more speech errors).

The following code reproduces Figure 12.1 with ggplot(). Notice that
geom_point() draws from the mappings specified inside the ggplot() function,
the alcohol tibble. geom_line(), on the other hand, draws its predicted values
from the mdl_preds tibble (compare Chapter 11.6).

ggplot(alcohol, aes(x = BAC, y = speech_error)) +
 geom_point(size = 4, alpha = 0.6) +
 geom_line(data = mdl_preds,
 aes(x = BAC_vals, y = y_preds)) +
 theme_minimal()

12.5. � Predicting the Dative Alternation
Let’s perform another logistic regression, following the steps of Bresnan and col-
leagues (Bresnan et al., 2007). Linguists are interested in what is called the ‘dative
alternation’. For example, English speakers can either say, Who gave you that won-
derful watch? or Who gave that wonderful watch to you? (Bresnan & Hay, 2008).
The first syntactic construction is called a ‘double object construction’. The sec-
ond syntactic construction is called a ‘prepositional dative’. What makes speakers
choose one construction over another?

There are many predictors of the dative alternation. Here, only the role of ‘animacy’
will be explored. Compare the question Who sent the box to Germany? to the ques-
tion Who sent Germany the box? The recipient of the sending event is Germany, an
inanimate referent, in contrast to animate referents such as Sarah, Bill, or the children.
For many speakers, Who sent Germany the box? sounds a bit strange. However, when
the recipient is animate, the same double object construction seems to work just fine,
as in Who sent Sarah the box? Bresnan and colleagues (2007) found that the preposi-
tional dative was greatly preferred when the recipient was inanimate (sent the box to
Germany).

15034-2313q-3pass-r02.indd 207 10/3/2019 5:53:08 PM

208  Generalized Linear Models 1: Logistic Regression

The relevant dataset is called dative, and it is accessible via the languageR
package (Baayen, 2013).

library(languageR)

Let’s check the first two rows of the dative data frame with head() (this is not
a tibble).

head(dative, 2)

 Speaker Modality Verb SemanticClass LengthOfRecipient
1 <NA> written feed t 1
2 <NA> written give a 2
 AnimacyOfRec DefinOfRec PronomOfRec LengthOfTheme
1 animate definite pronominal 14
2 animate definite nonpronominal 3
 AnimacyOfTheme DefinOfTheme PronomOfTheme
1 inanimate indefinite nonpronominal
2 inanimate indefinite nonpronominal
 RealizationOfRecipient AccessOfRec AccessOfTheme
1 NP given new
2 NP given new

The relevant response variable is RealizationOfRecipient. Let’s check the
content of this column with the table() function.

table(dative$RealizationOfRecipient)

 NP PP
2414 849

There were 2,414 instances of the ‘NP’ construction (double object construction,
Who gave you that wonderful watch?) and 849 instances of the ‘PP’ construction
(prepositional dative, Who gave that wonderful watch to you?). We want to model
this binary category as a function of AnimacyOfRec, which describes the animacy
of the recipient (inanimate: Germany, versus animate: Sarah). The corresponding
glm() function call looks as follows:

dative_mdl <- glm(RealizationOfRecipient ~ AnimacyOfRec,
 data = dative, family = 'binomial')

tidy(dative_mdl)

 term estimate std.error
1 (Intercept) -1.154058 0.04259436
2 AnimacyOfRecinanimate 1.229407 0.13628810
 statistic p.value
1 -27.09415 1.154003e-161
2 9.02065 1.869763e-19

15034-2313q-3pass-r02.indd 208 10/3/2019 5:53:08 PM

Generalized Linear Models 1: Logistic Regression  209

Notice that because ‘animate’ comes before ‘inanimate’ in the alphabet, the
animate recipient category is assigned to be the reference level of the animacy
predictor. Thus, the predicted log odds for the animate recipients are ‘hidden’ in
the intercept. You can also see this by the fact that the slope mentions ‘inanimate’
(AnimacyOfRecinanimate), which corresponds to the fact that this is a slope
towards the animate category. Thus, the model predicts a log odds value of −1.15 for
animates and a log odds value of − + =1 15 1 23 0 08. . . for inanimates. But wait, is this
output given in terms of predicting the probability of prepositional datives or in terms
of predicting the double object construction?

To answer this question, you need to know the order of the levels in the column of
the response variable, for which you can use the levels() function (see Chapters 1
and 7).

levels(dative$RealizationOfRecipient)

[1] "NP" "PP"

Logistic regression in R will always model the quantity that is shown to the right,
so, in this case, "PP", the prepositional dative. Thus, the positive slope of +1.22
means that for inanimates (as opposed to animates), the odds of observing a prepo-
sitional dative increase. Let’s calculate the probabilities that correspond to these log
odds.

intercept <- tidy(dative_mdl)$estimate[1]

slope <- tidy(dative_mdl)$estimate[2]

plogis(intercept + slope * 0)

[1] 0.2397487

plogis(intercept + slope * 1)

[1] 0.5188285

Thus, the model predicts that the probability of observing a prepositional dative is
0.52 when the recipient is inanimate. It only predicts a probability of 0.24 when the
recipient is animate.

How could you report this result? Here’s one way of doing it: ‘The predicted prob-
ability of observing a prepositional dative was 0.24 for animate recipients and 0.52
for inanimate recipients (logit difference: +1.22, SE = 0.13, z = 9.02, p< 0.0001).’ To
interpret the p-value for the AnimacyOfRecinanimate difference, you need to
remember that ‘e-19’ means that the reported number (1.9) has to be shifted 19 deci-
mal places to the right, which can be reported as p< 0.0001 (it is conventional to use
such ‘smaller than’ statements for very low p-values). Thus, under the null hypothesis
that there is no difference between inanimate and animate recipients, this data is fairly
unexpected.

15034-2313q-3pass-r02.indd 209 10/3/2019 5:53:09 PM

210  Generalized Linear Models 1: Logistic Regression

12.6. � Analyzing Gesture Perception

12.6.1.  Exploring the Dataset

In the final example, you will analyze data from a gesture perception experiment con-
ducted by Hassemer and Winter (2016) (see also Hassemer & Winter, 2018). In this study,
we were trying to understand how onlookers infer information from gesture, using 3D
hand shapes such as those shown in Figure 12.6. For the hand shapes towards the right
in this figure, the pinkie finger, the ring finger, and the middle finger are curled in. For
the hand shapes towards the left, these fingers are extended. In our paper, we called this
variable ‘pinkie curl’. In his PhD thesis, Hassemer (2016) claimed that hand gestures with
a high degree of pinkie curl (with the pinkie curled in, to the right of Figure 12.6) lead to
a ‘height interpretation’ of this gesture. In this case, the onlooker focuses on the distance
between the index finger and the thumb pad, as if the gesturer was indicating the size of
an imaginary object held between the fingers. In contrast, for the hand shapes towards the
left of Figure 12.6, Hassemer (2016) argues that a shape reading is more likely, with the
C-shape spanned between the index finger and thumb indicating a round shape.

In our experiment, we showed participants a single hand shape from the continuum
in Figure 12.6. We then asked participants whether they thought the gesture indicated
the height or the shape of an object. This is a two-alternative forced choice task, with
the choice between ‘height’ and ‘shape’ being our response measure. The goal of the
following analysis is to model this response as a function of ‘pinkie curl’. Let’s load
the data into your current R session.

ges <- read_csv('hassemer_winter_2016_gesture.csv')

ges

A tibble: 309 x 5
 index_curve pinkie_curl question_order confidence choice
 <int> <int> <chr> <int> <chr>
 1 1 9 height_first 8 height
 2 5 6 shape_first 7 shape
 3 2 7 height_first 8 height
 4 4 3 height_first 8 shape

Figure 12.6. � A nine-stepped continuum of 3D hand shapes that we used as stimuli for a
web-based perception experiment in Hassemer and Winter (2016); the hand
shapes were designed by 3D graphic designer Philip Krakow

15034-2313q-3pass-r02.indd 210 10/3/2019 5:53:09 PM

Generalized Linear Models 1: Logistic Regression  211

 5 1 1 height_first 8 shape
 6 6 9 height_first 9 shape
 7 6 7 shape_first 6 shape
 8 3 7 shape_first 7 shape
 9 1 2 shape_first 3 shape
10 6 2 height_first 7 shape
... with 299 more rows

Each row in this tibble represents one participant (there were 309 participants in
total). For now, the only relevant columns are pinkie_curl (the predictor) and
choice (the response). As usual, start by familiarizing yourself with this dataset.
How were the participants distributed across the pinkie curl conditions? To answer
this question, you can tabulate the counts of data points per pinkie curl value with the
table() function.

table(ges$pinkie_curl)

 1 2 3 4 5 6 7 8 9
33 37 37 30 42 44 32 24 30

As shown in Figure 12.8, there are 9 steps to the pinkie curl continuum, ranging
from 1 (fingers extended) to 9 (fingers curled in). Based on this table, it looks like
there are about equally many participants per condition. Next, which response option
was chosen more frequently?

table(ges$choice)

height shape
 125 184

These counts suggest that participants overall preferred the shape option. You can
check the proportion by dividing the two cell counts by the total count:

table(ges$choice) / sum(table(ges$choice))

 height shape
0.4045307 0.5954693

For the same result, you can put prop.table() around the table() output.

prop.table(table(ges$choice))

 height shape
0.4045307 0.5954693

Let us cross-tabulate the two response options against the pinkie curl variable and
store the resulting contingency table in an object called xtab.

15034-2313q-3pass-r02.indd 211 10/3/2019 5:53:09 PM

212  Generalized Linear Models 1: Logistic Regression

xtab <- table(ges$pinkie_curl, ges$choice)

xtab

 height shape
 1 14 19
 2 17 20
 3 12 25
 4 5 25
 5 9 33
 6 15 29
 7 15 17
 8 18 6
 9 20 10

Comparing the counts in the left column (height responses) to the counts in the
right column (shape responses) for different pinkie curl values reveals that there are
more height than shape responses only for the two biggest pinkie curl values (8 and 9).
In other words, shape responses are relatively underrepresented for high pinkie curl
variables, just as Hassemer’s (2016) theory predicts. This pattern is perhaps easier to
see when looking at row-wise proportions. The rowSums() function can be used to
divide each count by the sum of each row.

xtab / rowSums(xtab)

 height shape
 1 0.4242424 0.5757576
 2 0.4594595 0.5405405
 3 0.3243243 0.6756757
 4 0.1666667 0.8333333
 5 0.2142857 0.7857143
 6 0.3409091 0.6590909
 7 0.4687500 0.5312500
 8 0.7500000 0.2500000
 9 0.6666667 0.3333333

Alternatively, you can use prop.table() and specify ‘1’ to compute row-wise
proportions. The following code also uses round() to round the proportions to two
digits.

round(prop.table(xtab, 1), digits = 2)

 height shape
 1 0.42 0.58
 2 0.46 0.54
 3 0.32 0.68
 4 0.17 0.83
 5 0.21 0.79

15034-2313q-3pass-r02.indd 212 10/3/2019 5:53:09 PM

Generalized Linear Models 1: Logistic Regression  213

 6 0.34 0.66
 7 0.47 0.53
 8 0.75 0.25
 9 0.67 0.33

12.6.2.  Logistic Regression Analysis

Now that you have a good understanding of this dataset, let’s fit a logistic regression
model. You want to model choice as a function of pinkie_curl. Type in the fol-
lowing line of code, which results in an error message.

ges_mdl <- glm(choice ~ pinkie_curl, data = ges) # error

Error in y - mu : non-numeric argument to binary operator

The cryptic error message tells you that something is wrong with ‘y’. The prob-
lem is that you forgot to specify the family argument, which needs to be set to
 'binomial' for logistic regression—otherwise, the glm() function does not know
what type of generalized linear model to fit.

ges_mdl <- glm(choice ~ pinkie_curl,
data = ges, family = 'binomial') # error

Error in eval(expr, envir, enclos) : y values must be 0 <= y <= 1

Another error message! The problem here is that choice is coded as a character
vector. However, for logistic regression, the response needs to be either coded as 0 or
1, or it needs to be coded as a factor.

Convert to factor and check:

ges <- mutate(ges, choice = factor(choice))

class(ges$choice)

[1] "factor"

It’s worth checking in which order the levels are listed:

levels(ges$choice)

[1] "height" "shape"

This means that logistic regression will report the probability of observing a
‘shape’ response. So, let’s fit the model:

ges_mdl <- glm(choice ~ pinkie_curl, data = ges,
 family = 'binomial')

tidy(ges_mdl)

15034-2313q-3pass-r02.indd 213 10/3/2019 5:53:09 PM

214  Generalized Linear Models 1: Logistic Regression
 term estimate std.error statistic p.value
1 (Intercept)    1.0651620 0.26714076 3.987269 6.683834e-05
2 pinkie_curl    -0.1377244 0.04794959 -2.872274 4.075298e-03

Notice that pinkie_curl is entered as a numeric variable.4 Because
pinkie_curl is a numeric predictor, you can interpret the corresponding slope to mean
that, for each increase in pinkie_curl by one step along the pinkie curl continuum,
the log odds of observing a shape response decrease by -0.13772. To put this into plain
English: as the pinkie finger becomes more curled in, shape responses become less likely.
For interpretative purposes, you can also reverse the sign—in which case, the log odds of
observing a height response increase by +0.13772 for each step along the continuum.

To generate predictions for all pinkie curl values, predict() comes in handy.
Let’s generate a tibble with values to generate predictions for.

ges_preds <- tibble(pinkie_curl = 1:9)

predict(ges_mdl, ges_preds)

 1 2 3 4 5
 0.9274376 0.7897133 0.6519889 0.5142645 0.3765402
 6 7 8 9
 0.2388158 0.1010915 -0.0366329 -0.1743573

By default, predict() returns log odds. Notice that the predicted log odds are
only negative for the very high pinkie curl values of 8 and 9, which corresponds to the
fact that shape responses are less likely than height responses only for very high pinkie
curl values. To compute probabilities, use the logistic function plogis().

plogis(predict(ges_mdl, ges_preds))

 1 2 3 4 5
0.7165551 0.6877698 0.6574585 0.6258056 0.5930384
 6 7 8 9
0.5594218 0.5252514 0.4908428 0.4565208

Notice how the values for 8 and 9 are below 0.5, in line with the fact that the cor-
responding log odds were negative.

An alternative way to compute these probabilities is to use the type = 'response'
argument from the predict() function. This saves you using plogis().

predict(ges_mdl, ges_preds, type = 'response')

 1 2 3 4 5
0.7165551 0.6877698 0.6574585 0.6258056 0.5930384
 6 7 8 9
0.5594218 0.5252514 0.4908428 0.4565208

4	 This is legitimate here because the step-size between the different steps along the pinkie curl con-
tinuum is constant; that is, 1 and 2 are as far away from each other as are 8 and 9.

15034-2313q-3pass-r02.indd 214 10/3/2019 5:53:09 PM

Generalized Linear Models 1: Logistic Regression  215

Let’s compute the 95% confidence interval for plotting. The following code creates
a tibble with the lower bound (LB) and upper bound (UB) of the confidence interval
(see Chapter 11). Notice that, to compute the confidence interval in terms of probabili-
ties, you first need to compute the full confidence interval in log odds. Once you have
the log odd confidence interval, you can back-transform the lower bound and upper
bound of log odds into probabilities. Don’t transform the standard error and the fitted
values separately.

ges_preds <- as_tibble(predict(ges_mdl,
 ges_preds,
 se.fit = TRUE)[1:2]) %>%
 mutate(prob = plogis(fit),
 LB = plogis(fit - 1.96 * se.fit),
 UB = plogis(fit + 1.96 * se.fit)) %>%
 bind_cols(ges_preds)

As a result of the above pipeline, you now have a tibble with predictions and the
corresponding confidence interval.

ges_preds

A tibble: 9 x 6
 fit se.fit prob LB UB pinkie_curl
 <dbl> <dbl> <dbl> <dbl> <dbl> <int>
1 0.927 0.225 0.717 0.619 0.797 1
2 0.790 0.186 0.688 0.605 0.760 2
3 0.652 0.152 0.657 0.588 0.721 3
4 0.514 0.127 0.626 0.566 0.682 4
5 0.377 0.118 0.593 0.536 0.647 5
6 0.239 0.127 0.559 0.498 0.620 6
7 0.101 0.152 0.525 0.451 0.598 7
8 -0.0366 0.186 0.491 0.401 0.581 8
9 -0.174 0.225 0.457 0.351 0.566 9

This can be used as the basis for a plot of the predicted probabilities (Fig-
ure 12.7), which plots the 95% confidence intervals around each fitted value using
geom_errorbar(). The following command also sets the x-axis ticks to the inte-
ger sequence 1 to 9 with scale_x_continuous(). In addition, xlab() and
ylab() are used to tweak the axis labels.

ges_preds %>% ggplot(aes(x = pinkie_curl, y = prob)) +
 geom_point(size = 3) +
 geom_errorbar(aes(ymin = LB, ymax = UB), width = 0.5) +
 scale_x_continuous(breaks = 1:9) +
 xlab('Pinkie curl') +
 ylab('p(y = Shape)') +
 theme_minimal()

15034-2313q-3pass-r02.indd 215 10/3/2019 5:53:09 PM

216  Generalized Linear Models 1: Logistic Regression

12.7. � Chapter Conclusions
With this chapter, the book turned away from ordinary linear models to generalized
linear models, ‘generalizing’ the linear model framework to other data-generation pro-
cesses. You learned about your first GLM: logistic regression.

Logistic regression assumes that the response has been generated by a process
that is Bernoulli-distributed. The goal is to predict the parameter p, the probability of
observing a particular event. The logistic function is used to make sure that regression
doesn’t predict impossible probabilities, crunching any number into the range [0,1]
Then, you learned about the log odds, which is the internal ‘metric’ of logistic regres-
sion. The logistic function is used to transform log odds into probabilities.

The next chapter deals with another incredibly useful type of generalized linear
model, Poisson regression. Mathematically, this model actually turns out to be easier
than logistic regression! If you felt that this chapter was a little bit too much in terms
of the math, please hang on and continue reading. The next chapter will also give a
‘big picture’ overview of the generalized linear model framework. This will help to
clarify certain aspects of logistic regression.

12.8. � Exercises

12.8.1. � Exercise 1: Re-analysis of the Gesture Data with
a Centered Predictor

For the gesture data, center the pinkie curl variable and rerun the analysis. How does the
intercept change? What is its log odds value and what is the corresponding probability?

Figure 12.7.  Predicted probability of observing a shape response as a function of a ges-
ture’s pinkie curl

15034-2313q-3pass-r02.indd 216 10/3/2019 5:53:09 PM

Generalized Linear Models 1: Logistic Regression  217

12.8.2.  Exercise 2: Incorporate an Additional Predictor

For the gesture data, incorporate the additional predictor index_curve. This pre-
dictor quantifies the degree to which the index finger is curved. How does this variable
affect the proportion of shape responses? Compare these results to contingency tables
that compare the number of shape/height responses to the index curve variable.

12.8.3.  Exercise 3: Incorporating a Nonlinear Effect

Chapter 8 introduced polynomial regression. It turns out that the effect of the pinkie
curl variable in Hassemer and Winter (2016) shows some nonlinearities. After center-
ing the pinkie curl variable, create a quadratic version of this variable and add it to
the model. Is the quadratic effect significant? If so, what does the quadratic effect
correspond to conceptually?

15034-2313q-3pass-r02.indd 217 10/3/2019 5:53:09 PM

13.1. � Motivating Poisson Regression
Poisson regression is another type of generalized linear model, and it’s just as useful as
logistic regression. However, interestingly, Poisson regression is surprisingly underu-
tilized in the language sciences. This is perplexing because the Poisson distribution
is the canonical distribution for count processes and, if linguists like to do one thing,
it’s counting! They like to count words, grammatical constructions, sociolinguistic
variants, speech errors, discourse markers, and so on. In all of these cases, a Poisson
model is the natural choice.

Since Poisson regression is not as common as logistic regression, let me tell you about a
few cases where I have used this type of model. I hope that this will convince you of the util-
ity of this type of generalized linear model. In Winter and Grawunder (2012), we used Pois-
son regression to model the frequency of fillers (such as uh and oh) and certain discourse
markers as a function of politeness contexts. In Bentz and Winter (2013), we conducted a
typological study for which a particular version of Poisson regression was used to model
how many case markers a language has as a function of the proportion of second language
learners. Here, Poisson regression allowed us to assess the impact of language contact on
a language’s morphological complexity. In Winter, Perlman, and Majid (2018), we used a
version of Poisson regression to model the frequency of words as a function of their sensory
modality, testing the idea that the English language is characterized by visual dominance.
In fact, whenever word frequency is your response measure (and it often is in linguistics,
especially in corpus linguistics), you should consider using a Poisson regression model.

Figure 13.1a shows an artificial dataset where speech error counts are related to
blood alcohol concentration. Whereas speech errors were treated in a binary fashion in
the last chapter (presence or absence of speech error), it is treated as a count variable
here. The corresponding Poisson regression fit is shown as a thick line. This line can
be interpreted to represent the mean rate of a speech error occurring. Notice how the
speech error counts are more variable for high blood alcohol concentration than for low
blood alcohol concentration, which is a form of heteroscedasticity (discussed below).

13.2. � The Poisson Distribution
In the context of Poisson regression, the response y is assumed to be generated by a
process that follows a Poisson distribution.

13	 Generalized Linear Models 2
 Poisson Regression

15034-2313q-3pass-r02.indd 218 10/3/2019 5:53:09 PM

Generalized Linear Models 2: Poisson Regression  219

Figure 13.1. � (a) Speech error count as a function of blood alcohol concentration with
superimposed Poisson regression fit (bold curve); the white square repre-
sents the intercept; (b) two versions of the Poisson distribution with rates
of 2 and 5

y Poisson~ �� � � (E13.1)

The Poisson distribution is shown in Figure 13.1b for two representative param-
eters, with the height of the bars indicating the probability of particular counts. The
Poisson distribution only has one parameter, λ ‘lambda’, which specifies the rate of a
count process. If lambda is high, then the rate of observing an event (such as speech
errors, fillers, or grammatical markers) is high. Notice how, for the low rate λ= 2
(striped bars), the Poisson distribution indicates that the counts 1 and 2 are the most
probable. Not observing an event (a count of 0) is slightly less probable, and so are
counts much in excess of 2.

Importantly, the Poisson distribution is bounded by 0—counts cannot be negative.
And the distribution is a discrete (categorical) distribution, in that only positive inte-
gers are possible, with no in-betweens.

Another peculiar property of the Poisson distribution is that the variance of the
distribution is married to λ, in stark contrast to the normal distribution, where the
standard deviation σ is an independent parameter that needs to be estimated. You can
see this in Figure 13.1b by the fact that the distribution for λ= 5 has a higher spread
than the distribution for λ= 5. For low rates, the variance is low because the distribu-
tion is bounded by 0, with no way of extending beyond that boundary. For high rates,
the distribution can extend in both directions, towards lower and higher counts. You
can think of this as ‘heteroscedasticity’ (unequal variance, see Chapters 4 and 6) as
being built into this distribution.

Poisson regression models the parameter λ as a function of some predictors. The
problem is that our familiar equation ‘� �� �� * x’ can predict any value, but λ, being a
rate parameter, can only be positive. Thus, you need a function that restricts the output
of ‘� �� �� * xi’ to positive values. The function that achieves this is the exponential
function, as shown in Figure 13.2.

15034-2313q-3pass-r02.indd 219 10/3/2019 5:53:10 PM

DolanA
Highlight
AQ: Should the beta symbols be italic or roman?

DolanA
Highlight
see above

220  Generalized Linear Models 2: Poisson Regression

Figure 13.2. � (a) A linear relationship between y and x; transforming the y s with the expo-
nential function (b) restricts them to the positive range; the dashed line shows
that, when 0 is exponentially transformed, it becomes 1

Thus, wrapping the exponential function around ‘� �� �� * xi’ will ensure that no
negative values can be predicted.

�i iexp x� �� �� �0 1 * � (E13.2)

Remember from the last chapter and Chapter 5 that the logarithm is the inverse of
the exponential function. If we take the logarithm for both sides of E13.2, the equation
becomes:

log() *�i ix� �� �0 1 � (E13.3)

Thus, the familiar equation ‘� �� �� * xi’ will predict log-lambdas. Similar to logistic
regression, this means that we will have to be careful in interpreting the output, for
which this chapter will give a lot of guidance.

13.3. � Analyzing Linguistic Diversity Using
Poisson Regression

You are now going to analyze the data from Nettle’s (1999) book on linguistic
diversity, a dataset that was very briefly introduced in Chapters 1 and 2. To remind
you of Nettle’s hypothesis: countries with lower ecological risk (more fertile envi-
ronments) are predicted to have higher linguistic diversity. Nettle (1999) analyzed
the data by log-transforming language counts. This is sub-optimal (O’Hara &
Kotze, 2010) because, amongst other things, count data will often exhibit hetero-
scedasticity even after log-transforming. The Poisson is the canonical distribution
for counts.

15034-2313q-3pass-r02.indd 220 10/3/2019 5:53:12 PM

DolanA
Highlight
see prev comment

Generalized Linear Models 2: Poisson Regression  221

Let’s start by loading in the spreadsheet with read_csv().

library(tidyverse)
library(broom)

nettle <- read_csv('nettle_1999_climate.csv')

nettle

A tibble: 74 x 5
 Country Population Area MGS Langs
 <chr> <dbl> <dbl> <dbl> <int>
 1 Algeria 4.41 6.38 6.60 18
 2 Angola 4.01 6.10 6.22 42
 3 Australia 4.24 6.89 6.00 234
 4 Bangladesh 5.07 5.16 7.40 37
 5 Benin 3.69 5.05 7.14 52
 6 Bolivia 3.88 6.04 6.92 38
 7 Botswana 3.13 5.76 4.60 27
 8 Brazil 5.19 6.93 9.71 209
 9 Burkina Faso 3.97 5.44 5.17 75
10 CAR 3.50 5.79 8.08 94
... with 64 more rows

The columns Population and Area contain the log10 population size and area of
the country, respectively. For the time being, the relevant variables for our analysis will
be MGS (mean growing season, a measure of ecological risk, the predictor) and Langs
(the number of languages within a country). The MGS predictor indicates how many
months per year one can grow crops in a country.

As always, it makes sense to first get a feel for this dataset, for example, by check-
ing the range of the MGS variable:

range(nettle$MGS)

[1] 0 12

This shows that there are some countries in which one cannot grow crops at all
(MGS = 0 months), as well as others where one can grow crops throughout the entire
year (MGS = 12 months). The following code displays those countries that have a
mean growing season of either 0 or 12.

filter(nettle, MGS == 0 | MGS == 12)

A tibble: 6 x 5
 Country Population Area MGS Langs
 <chr> <dbl> <dbl> <dbl> <int>
1 Guyana 2.90 5.33 12. 14
2 Oman 3.19 5.33 0. 8

15034-2313q-3pass-r02.indd 221 10/3/2019 5:53:12 PM

222  Generalized Linear Models 2: Poisson Regression
3 Solomon Islands 3.52 4.46 12. 66
4 Suriname 2.63 5.21 12. 17
5 Vanuatu 2.21 4.09 12. 111
6 Yemen 4.09 5.72 0. 6

same as:

filter(nettle, MGS %in% range(MGS))

The countries Guyana, Solomon Islands, Suriname, and Vanuatu have a mean grow-
ing season of 12, indicating minimal ecological risk (fertile environments that facili-
tate local subsistence farming). In contrast, Oman and Yemen have a mean growing
season of 0, indicating maximal ecological risk (arid environments that make people
form widespread trade networks). Notice, furthermore, how Oman and Yemen have
fewer distinct languages (Langs) than the other countries, which is our first indica-
tion that Nettle’s hypothesis might be right.

To model linguistic diversity as a function of ecological risk with Poisson regres-
sion, glm() is the relevant function. As was the case in the last chapter, the argument
family is used to specify the type of GLM. This time around, specify family to
be 'poisson'.

MGS_mdl <- glm(Langs ~ MGS, data = nettle,
 family = 'poisson')

tidy(MGS_mdl)

 term estimate std.error statistic p.value
1 (Intercept) 3.4162953 0.039223267 87.09869 0.000000e+00
2 MGS 0.1411044 0.004526387 31.17375   2.417883e-213

The coefficients of a Poisson model are represented as logarithms. Thus, exponen-
tiation will be needed to report the predicted mean rate. Let’s perform some example
calculations. First, extract the coefficients.

mycoefs <- tidy(MGS_mdl)$estimate

Extract intercept and slope:

intercept <- mycoefs[1]

slope <- mycoefs[2]

Check:

intercept

[1] 3.416295

15034-2313q-3pass-r02.indd 222 10/3/2019 5:53:12 PM

Generalized Linear Models 2: Poisson Regression  223

slope

[1] 0.1411044

Let’s see what the model predicts for the full range of MGS values from 0 to 12
months.

intercept + 0:12 * slope

 [1] 3.416295 3.557400 3.698504 3.839609 3.980713 4.121818
 [7] 4.262922 4.404026 4.545131 4.686235 4.827340 4.968444
[13] 5.109549

So, for a mean growing season of 0 months, the model predicts a log language rate
of 3.41. For a 1-month growing season, the model predicts a log rate of 3.56, and so
on. Exponentiating these fitted values yields the estimated lambdas.

exp(intercept + 0:12 * slope)

 [1] 30.45637 35.07188 40.38685 46.50727 53.55521
 [6] 61.67123 71.01719 81.77948 94.17275 108.44415
[11] 124.87831 143.80298 165.59559

These can meaningfully be interpreted as the mean rate of languages. That is, you
expect a country with 0 months MGS to have about 30 languages. On the other hand,
a country with 12 months MGS is predicted to have about 166 languages.

For plotting purposes, let’s create a more fine-grained sequence of predictions from
0 to 12 in a step-size of 0.01.

myMGS <- seq(0, 12, 0.01)

Let’s generate predictions with predict(), for which we need the MGS predic-
tor to be in a tibble.

Tibble to generate predictions for:

newdata <- tibble(MGS = myMGS)

newdata

A tibble: 1,201 x 1
 MGS
 <dbl>
 1 0
 2 0.01
 3 0.02
 4 0.03

15034-2313q-3pass-r02.indd 223 10/3/2019 5:53:12 PM

224  Generalized Linear Models 2: Poisson Regression
 5 0.04
 6 0.05
 7 0.06
 8 0.07
 9 0.08
10 0.09
... with 1,191 more rows

The log predictions can be computed as follows:

MGS_preds <- predict(MGS_mdl, newdata)

head(MGS_preds)

 1 2 3 4 5 6
3.416295 3.417706 3.419117 3.420528 3.421939 3.423350

Exponentiating this yields the estimates of λ, the rate of language occurrence as a
function of growing season.

MGS_preds <- exp(MGS_preds)

head(MGS_preds)

 1 2 3 4 5 6
30.45637 30.49938 30.54245 30.58557 30.62876 30.67201

Alternatively, you can use the type = 'response' to make the predict()
function compute the estimated lambdas directly.

MGS_preds <- predict(MGS_mdl, newdata, type = 'response')

head(MGS_preds)

 1 2 3 4 5 6
30.45637 30.49938 30.54245 30.58557 30.62876 30.67201

Next, put everything into a tibble for ggplot2.

mydf <- tibble(MGS = myMGS, Rate = MGS_preds)

A tibble: 1,201 x 2

 MGS Rate
 <dbl> <dbl>
 1 0 30.5
 2 0.01 30.5
 3 0.02 30.5
 4 0.03 30.6
 5 0.04 30.6
 6 0.05 30.7

15034-2313q-3pass-r02.indd 224 10/3/2019 5:53:12 PM

Generalized Linear Models 2: Poisson Regression  225

 7 0.06 30.7
 8 0.07 30.8
 9 0.08 30.8
10 0.09 30.8
... with 1,191 more rows

You can then plot the data with a superimposed Poisson regression fit, as shown in
Figure 13.3. In this code chunk, geom_line() draws from the tibble with predic-
tions, and it gets a new set of mappings.

nettle %>% ggplot(aes(x = MGS, y = Langs)) +
 geom_text(aes(label = Country)) +
 geom_line(data = mydf, mapping = aes(x = MGS, y = Rate),
 col = 'blue', size = 1) +
 theme_minimal()

13.4. � Adding Exposure Variables
Nettle (1999) observed that, in order for the regression of languages on mean grow-
ing season to be meaningful, one has to control for a country’s size. Obviously, larger
countries tend to have more different languages, such as India, which is a very big
country that also has a lot of linguistic diversity. In this case, a country’s area deter-
mines what in Poisson regression is called ‘exposure’: more area means more oppor-
tunities for observing high counts. You can adjust a rate by an exposure variable,

Figure 13.3. � Linguistic diversity as a function of mean growing season (Nettle, 1999) with
Poisson regression fit; the line represents the predicted language rate

15034-2313q-3pass-r02.indd 225 10/3/2019 5:53:12 PM

226  Generalized Linear Models 2: Poisson Regression

which is area in this case, but it could be time in other applications. For example, if
you were to conduct an experiment where you are counting speech errors in trials with
varying durations, there are naturally going to be higher counts for longer trials.

For exposure variables, the rate lambda is split into two components, the
mean number of events μ, per unit of exposure τ ‘tau’. For example, μ could
be the average number of languages per country, and τ could be the size of the
country. Alternatively, μ could be the average number of speech errors, and τ

could be the duration of a trial. The rate then is � �
�
� , such as ‘number of languages

per square mile’ or ‘number of speech errors per second’. I will spare you the deriva-
tion of the following formula, but in the presence of an exposure variable, the equation
for the predicted log number of languages is the following.1

log log� � � �� � � �� � � �0 1 MGS � (E13.4)

Thus, the log number of languages is a function of ‘ ’� �0 1� �MGS and the exposure
term log �� �. Notice that there’s no β in front the exposure variable—this term has no
coefficient, which also means that nothing is actually estimated for this term. In this case,
adding a country’s area as an exposure term is effectively saying that the average number
of languages occurring in a country is directly proportional to the size of a country.

In R, all of this is easy. You simply need to wrap offset() around the exposure
variable of interest—in this case, Area.

MGS_mdl_exposure <- glm(Langs ~ MGS + offset(Area),
 data = nettle, family = 'poisson')

tidy(MGS_mdl_exposure)

 term estimate std.error statistic p.value
1 (Intercept) -2.8230092 0.040738134 -69.29648 0
2 MGS 0.2092749 0.004719774 44.34003 0

Notice how, compared the model without the exposure variable, the slope of MGS
variable has increased by about 50%. Thus, after controlling for a country’s size, the
relationship between ecological risk and linguistic diversity is estimated to be even
stronger.

1	 If you’re mathematically inclined, read this footnote. First, the logarithm of a quotient such as

�
�

can be expressed as a subtraction of two logarithms, so:

log log log� �
� � �� � � �
�
�

�
�
� � � � � � �log

Combining this with the predictive equation yields:

log � � � �� � � � � � � �log 0 1 MGS

Next, move the exposure term log �� � over to the right-hand side of the equation, which yields
E13.4. McElreath (2016: 312–313) has a particularly clear discussion of this.

15034-2313q-3pass-r02.indd 226 10/3/2019 5:53:22 PM

Generalized Linear Models 2: Poisson Regression  227

To give another example of the usefulness of exposure variables, consider the above-
mentioned study on politeness markers (Winter & Grawunder, 2012). As mentioned
before, this study investigated the rate with which Korean speakers used fillers such
as uh and oh as a function of politeness contexts. Crucially, our task was open-ended,
which meant that, for each trial, participants could talk as much as they wanted. This
resulted in some fairly long utterances, as well as some very short ones. Naturally,
longer utterances contain more fillers, which we dealt with by adding the exposure
variable ‘utterance length’.

13.5. � Negative Binomial Regression for Overdispersed
Count Data

As discussed above, the variance of the Poisson distribution scales with the mean:
the higher the mean rate, the more variable the counts. However, it is possible that
in an actual dataset, the variance is larger than is theoretically expected for a given
lambda. If this happens, you are dealing with what’s called ‘overdispersion’ or ‘excess
variance’.2

You can compensate for overdispersion by using a variant of Poisson regression
that is called ‘negative binomial regression’. Essentially, this is a generalization of
Poisson regression where the variance is ‘freed’ from the mean. In other words, the
constraint that the mean is equal to the variance is relaxed for negative binomial
regression. Other than that, everything else that you’ve learned about Poisson regres-
sion stays the same.

Let us refit the above model (with exposure variables), this time using negative
binomial regression rather than Poisson regression. For this, the glm.nb() function
from the MASS package can be used (Venables & Ripley, 2002).

library(MASS)

Fit negative binomial regression:

MGS_mdl_nb <- glm.nb(Langs ~ MGS + offset(Area),
 data = nettle)

tidy(MGS_mdl_nb)

 term estimate std.error statistic p.value
1 (Intercept) -3.0527417 0.26388398     -11.568500 5.951432e-31
2 MGS 0.2296025  0.03418441 6.716585 1.860333e-11

First, notice that the standard error for the MGS slope has increased by quite a bit
compared to the corresponding Poisson model. Negative binomial models are gener-
ally the more conservative option if there actually is overdispersion present in the
data. Let’s have a look at the summary() output of the model.

2	 The term ‘underdispersion’ describes cases where there is less variance than theoretically expected
under the Poisson distribution. I have never encountered underdispersion in a linguistic dataset up
to this point.

15034-2313q-3pass-r02.indd 227 10/3/2019 5:53:22 PM

228  Generalized Linear Models 2: Poisson Regression

summary(MGS_mdl_nb)

Call:
glm.nb(formula = Langs ~ MGS + offset(Area), data = net-
tle, init.theta = 1.243938533,
 link = log)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.3904 -0.9479 -0.4620 0.2822 2.5034

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.05274 0.26388 -11.568 < 2e-16 ***
MGS 0.22960 0.03418 6.717 1.86e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(1.2439) family
taken to be 1)

 Null deviance: 120.21 on 73 degrees of freedom
Residual deviance: 82.25 on 72 degrees of freedom
AIC: 771.88

Number of Fisher Scoring iterations: 1
 Theta: 1.244
 Std. Err.: 0.190

2 x log-likelihood: -765.87

You can test whether there is a ‘significant’ degree of overdispersion via overd-
ispersion tests, one implementation of which is the odTest() function from the
pscl package (Jackman, 2015). This function performs a likelihood ratio test (see
Chapter 15), comparing the likelihood of the negative binomial model against the
likelihood of the corresponding Poisson model.

library(pscl)

Perform overdispersion test:

odTest(MGS_mdl_nb)

Likelihood ratio test of H0: Poisson, as restricted NB
model:
n.b., the distribution of the test-statistic under H0 is
non-standard
e.g., see help(odTest) for details/references

15034-2313q-3pass-r02.indd 228 10/3/2019 5:53:22 PM

Generalized Linear Models 2: Poisson Regression  229

Critical value of test statistic at the alpha= 0.05 level:
2.7055
Chi-Square Test Statistic = 5533.0321 p-value = < 2.2e-16

In this case, the difference in likelihood between the two models is significant
(p-value = < 2.2e-16), indicating that you should use a negative binomial
model rather than simple Poisson regression. If you wanted to report the results of
this overdispersion test, I would write something like this: ‘A likelihood ratio test of
a negative binomial model against a Poisson model revealed a significant difference
(. , .)x2 1 5533 03 0 0001� � � �p .’ The ‘1’ inside the brackets represents the degrees of
freedom, which, as was the case with the model comparisons performed in Chapter 11,
indicates the difference in the number of estimated parameters for the two models. The
number is 1 because negative binomial regression estimates one additional parameter
(the dispersion parameter). The test statistic for this is x2 ‘chi squared’—this is a new
test statistic, just like t and F discussed in previous chapters. I am not going to go into
the details of the chi-square distribution here.

13.6. � Overview and Summary of the Generalized Linear
Model Framework

Figure 13.4 summarizes the aspects of the generalized linear model framework that
you have learned about so far.

There’s one new bit that you haven’t been exposed to so far, which is the function I()
wrapped around the predictor for linear regression. This is what is called the ‘identity
function’. The term ‘identity function’ simply is math-speak for a function that preserves
identity. Or, in other words, this function does nothing: I(x) = x. The identity function in
this case can be paraphrased as follows: ‘Take the predictor as is, with no transforma-
tions.’ The reason for adding it to Figure 13.4 is that it shows the parallelism between the
different types of models. It allows you to see that linear regression is actually a specific
case of the generalized linear model, namely, a GLM where the output of the predictive
equation isn’t transformed. Thus, the GLM framework subsumes linear regression.

Figure 13.4 furthermore highlights that each GLM has three components. First, a dis-
tribution for the data-generating process. Second, a predictive equation, what is called
the ‘linear predictor’ in the GLM framework, and this is what you are used to thinking
of as your model’s equation. The third component is the ‘link function’, which links the
linear predictor to the parameter of interest. This function ensures that the linear predictor
predicts sensible values for each parameter, that is, values between 0 and 1 for p, and posi-
tive values for λ. Perhaps somewhat confusingly, the link functions are named after their
inverses: logistic regression uses the logit or ‘log odd’ link, Poisson regression uses the

Figure 13.4. � Summary of the three types of generalized linear models covered so far

15034-2313q-3pass-r02.indd 229 10/3/2019 5:53:23 PM

DolanA
Highlight
Please use the same x symbol as appears on p. 262 (I can't paste it here)

DolanA
Highlight
Please use the same x symbol as appears on p. 262 (I can't paste it here)

DolanA
Cross-Out

230  Generalized Linear Models 2: Poisson Regression

log link function. As a result of the link function, logistic regression returns log odd pre-
dictions, and Poisson regression returns log predictions. For logistic regression, you need
the logistic function to transform the log odd predictions into probabilities. For Poisson
regression, you need the exponential function to transform the log predictions into rates.

13.7. � Chapter Conclusions
In this chapter, you have extended your knowledge of generalized linear models.
Specifically, you have learned how to model count data with Poisson regression, and
its extension, negative binomial regression. The coefficients of a Poisson model are
shown as log coefficients, which means that, after calculating the log predictions,
you need to use exponentiation to interpret your model in terms of average rates.
To control for differential exposure (such as countries of varying sizes, time inter-
vals of varying durations, etc.), exposure variables can be added. Negative binomial
regression was used to account for overdispersion. The set of tools learned in this
chapter allow modeling a wide array of data structures. Whenever you see count
data, Poisson regression and its sister, negative binomial regression, should be your
go-to tools.

Finally, this chapter concluded with an overview of the generalized linear model
framework. In particular, it was highlighted that each GLM has three components:
a distribution for the data-generating process, a linear predictor, and a link function.

13.8. � Exercises

13.8.1.  Exercise 1: Getting a Feel for Poisson Data

The rpois() function can be used to generate random data that is Poisson-distrib-
uted. Notice how all the random number generation functions in R start with the letter
‘r’, which stands for ‘random’. You already know rnorm() and runif().

You supply two things to the rpois() function: lambda, and how many numbers
you want to generate.

rpois(50, lambda = 2)  # output not shown

You can tabulate the counts and plot them as follows:

plot(table(rpois(50, lambda = 2)))

Play around with different lambdas to get a feel for the Poisson distribution.

13.8.2. � Exercise 2: Visual Dominance

Winter et al. (2018) showed that, on average, English visual words are more frequent
than words for the other modalities. This exercise asks you to retrace this analysis
focusing on the subset of adjectives (the paper also included verbs and nouns). First,

15034-2313q-3pass-r02.indd 230 10/3/2019 5:53:23 PM

Generalized Linear Models 2: Poisson Regression  231

load in the Lynott and Connell (2009) sensory modality ratings, as well as the English
Lexicon Project data file which contains SUBTLEX word frequencies.

lyn <- read_csv('lynott_connell_2009_modality.csv')
ELP <- read_csv('ELP_full_length_frequency.csv')

Next, merge the information from the ELP tibble into the lyn tibble:

both <- left_join(lyn, ELP)

Select only the relevant columns. If you have the MASS package loaded from the
previous exercises, there will be a naming conflict, as this package also contains a
function called select(), just like dplyr. The following command tells R that you
mean the dplyr function, not the MASS function:

both <- dplyr::select(both,
    Word, DominantModality:Smell, Log10Freq)

Finally, to apply Poisson regression, you need the frequency variable as positive
integers.

both <- mutate(both, Freq = 10 ^ Log10Freq)

Next, fit a model Poisson regression model with Taste, Smell, Touch, Sight,
and Sound as predictors (all of these are continuous rating scales). After this, fit a
negative binomial regression model using the glm.nb() function from the MASS
package. Check whether there is significant overdispersion with the odTest() func-
tion from the pscl package. Interpret the Poisson and negative binomial regression
outputs. Do English speakers use visual adjectives more frequently? What about smell
adjectives in comparison? How do the results of the Poisson and negative binomial
regression compare to each other?

As an additional exercise, you may want to assess collinearity between the different
predictors (see Chapter 6) with the vif() function from the car package.

15034-2313q-3pass-r02.indd 231 10/3/2019 5:53:23 PM

14.1. � Introduction
As you progressed through this book, the range of datasets that you could model
has continuously increased. This chapter will continue this trend, introducing you to
mixed effects models, which are also known as multilevel models.1 These models are
very common in the language sciences and related disciplines. Many datasets require
some form of mixed model. Luckily, everything that you have learned up to this point
is still relevant. As mixed models are an extension of regression, a lot will look famil-
iar to you. This chapter covers the conceptual side of mixed models. The next chapter
covers implementation.

14.2. � The Independence Assumption
You have been exposed to what are commonly called the ‘normality assumption’ and
the ‘constant variance assumption’ in various chapters (Chapter 4; see also Chapters 6
and 12). The importance of these two assumptions is far outweighed by the ‘independ-
ence assumption’. As you will see below, if the independence assumption is violated,
the results of statistical tests cannot be trusted.

What is independence? Rolling a die repeatedly is a nice example of a truly inde-
pendent process. Granted that you shake the die thoroughly before rolling it, the out-
come of each roll is independent from another one. A dependence, then, is any form of
connection between data points. For example, two data points could be connected by
virtue of coming from the same participant. In that case, these data points are not inde-
pendent anymore. Most of the time, multiple data points from the same participant are
more similar to each other than data points from different participants. You can think
of this as a statement about the residuals: if participant A performs overall differently
from participant B, then all of participant A’s residuals will act as a group, and so will
all of participant B’s residuals.

Violations of the independence assumption have massive effects on the Type I error
(false positive) rates of a study. In Winter (2011), I performed a simple simulation to
demonstrate the detrimental effects of violating the independence assumption. I used
speech production research as an example, where it is common practice to include

1	 You may also hear the term ‘hierarchical linear model’, which is often used to refer to mixed effects
models with a nested hierarchical structure (e.g., “pupil within classroom within school").

14	 Mixed Models 1
Conceptual Introduction

15034-2313q-3pass-r02.indd 232 10/3/2019 5:53:23 PM

DolanA
Highlight
curly quotes please

Mixed Models 1: Conceptual Introduction  233

exact repetitions of linguistic items; that is, the same word or sentence is uttered mul-
tiple times by the same speaker (for a critical discussion of this practice, see Winter,
2015). These repetitions introduce dependencies into one’s datasets, as each repetition
is always from the same participant, as well as from the same item. Adding lots of rep-
etitions to your experimental design and not telling your model about this amounts to
artificially inflating the sample size. My simulations showed that if these dependency
structures are not accounted for in one’s models, Type I error rates quickly climb way
past the commonly accepted 0.05 threshold.

Similar detrimental effects of violating the independence assumption have been
discussed extensively in other fields under the banner of ‘pseudoreplication’ and the
‘pooling fallacy’ (Hurlbert, 1984; Machlis, Dodd, & Fentress, 1985; Kroodsma, 1989,
1990; Lombardi & Hurlbert, 1996; Milinski, 1997; García-Berthou & Hurlbert, 1999;
Freeberg & Lucas, 2009; Lazic, 2010).

All sorts of linguistic datasets include non-independent cases. For example, nearly
every psycholinguistic, phonetic, or sociolinguistic study uses a ‘repeated measures
design’ where multiple data points are collected from the same participant. Depend-
encies between data points are also abundant in typological studies. For example,
due to them all coming from the same language family, one cannot treat German,
English, Farsi, and Hindi as independent data points in a statistical analysis (Jaeger,
Graff, Croft, & Pontillo, 2011; Roberts & Winters, 2013). Finally, non-independ-
ences are also abundant in corpus linguistics, where there are often multiple data
points from the same text, or the same author, or the same newspaper or publishing
house, etc.2

14.3. � Dealing with Non-independence via Experimental
Design and Averaging

How can one deal with violations of the independence assumption? Whether or not
the independence assumption has been violated is something that has to do with the
design of a study, as well as with how a study is analyzed. One can deal with the
independence assumption by designing studies that minimize dependence between
data points. For example, in some circumstances it may be possible to perform single-
trial between-participant experiments where each participant only contributes one
data point. In fact, you have seen data coming from such experiments throughout this
book. For example, the similarity-is-proximity study by Winter and Matlock (2013)
discussed in Chapter 8 was of this sort: each participant was exposed to a condition
where they either read the similar or the dissimilar text. No participant in this study
was exposed to both conditions. Another example of a single-trial between-partici-
pants experiment was the gesture perception study by Hassemer and Winter (2016)
discussed in Chapter 12. Here, each participant saw only one of the hand shapes from
the 3D hand shape continuum. In all of these cases, it was possible to fit simple linear
models or generalized linear models without violating the independence assumption

2	 In corpus linguistics, the independence assumption is routinely ignored by researchers. For exam-
ple, chi-square tests (see Appendix A) are performed on tables with multiple data points from
the same text or author. Gries (2015) says that mixed models are the ‘most under-used statistical
method in corpus linguistics’.

15034-2313q-3pass-r02.indd 233 10/3/2019 5:53:23 PM

234  Mixed Models 1: Conceptual Introduction

because the experimental design ensured that there weren’t multiple data points from
the same participant.

Another way of dealing with non-independences is via aggregation. If you had mul-
tiple data points from the same participant, why not average everything so that each
participant only contributes one data point? This is a possible way of dealing with
non-independent cases, but it’s not the optimal way, because whenever you compute
averages you lose information (see Chapter 4). In particular, the variation across the
non-independent cases is not retained in the final analysis. If your statistical model
only ‘sees’ the averaged data points, it is going to underestimate the amount of varia-
tion present in the data. This also means that the model has less information available
for making adequate inferences.

In fact, you’ve performed several analyses on averaged values throughout this book.
In studies that use ‘norms’ (psycholinguistic ratings), it is routinely the case that each
word is associated with a value that comes from averaging over the ratings of mul-
tiple participants. Such averaging characterized the Warriner et al. (2013) emotional
valence data (discussed in Chapters 3 and 7) and the iconicity rating data (discussed
in Chapters 6 and 8). In these analyses, each word only contributed one data point,
thus assuring independence across words. However, by-participant variability in the
ratings is not retained in the final analysis if you are working with by-word averages.

14.4. � Mixed Models: Varying Intercepts and Varying Slopes
So, it’s a good idea to avoid averaging whenever this is an option. This is where mixed
models come into play. These models allow incorporating non-independent clusters
of data into one’s analysis. In other words: you can tell your mixed model about the
dependency structures within a dataset so that it makes appropriate estimates and
draws appropriate inferences.

The primary workhorse for dealing with clusters of non-independent data points
are what many researchers call ‘random effects’; specifically, ‘random intercepts’ and
‘random slopes’. Here, I will adopt the terminology of ‘random effects’, but I will use
the terms ‘varying intercepts’ and ‘varying slopes’ instead of ‘random intercepts’ and
‘random slopes’. These concepts will be explained via a discussion of Figure 14.1.

Figure 14.1 depicts the relationship between response durations and trial order in a
psycholinguistic experiment. The trial order variable on the x-axis indicates progres-
sion through the experiment (to the left: beginning of the experiment; to the right:
end of the experiment). The data is shown separately for three participants, Yasmeen,
Logan, and Dan. When participants progress through an experiment, they tend to
either speed up or slow down. In this case, Yasmeen and Logan speed up (negative
slopes: shorter durations for later trials), and Dan slows down (positive slope: longer
durations for later trials). In addition, participants differ in whether they are overall
faster (particularly Yasmeen) or slower (particularly Dan).

In Figure 14.1, the population-level estimate is always shown as a solid black line.
This is what the mixed model predicts as the average effect across all participants. The
dashed lines indicate the participant-specific estimates. The top row indicates the fit
of a mixed model that allows participants to have varying intercepts, but not varying
slopes. As a result, this model allows the lines to differ in their intercepts (they are
shifted upwards or downwards) but not their slopes (the dashed lines are forced to be

15034-2313q-3pass-r02.indd 234 10/3/2019 5:53:23 PM

Mixed Models 1: Conceptual Introduction  235

parallel to the population line). Because the model hasn’t been instructed to estimate
varying slopes, it is quite off for some participants—in this case, particularly for Dan.
The fact that Dan slows down cannot be captured in a model where all slopes are
restricted to be parallel.

The bottom row indicates the fit of a mixed model that allows participants to have
varying intercepts, as well as varying slopes. This time around, the dashed lines are
much closer to the data of each participant. That is, the model adequately captures the
fact that some participants differ in their trial order effect.

The following equations show a simplified representation of mixed models. The
predictor ‘trial’ in these equations represents how far along a participant is in the
experiment (the x-axis in Figure 14.1).

Varying intercept model (‘random intercept model’):

y trialj� � �� �0 1 * � � (E14.1)

Varying intercept, varying slope model (‘random slope model’):

y trialj j� � �� �0 1 * � � (E14.2)

In this equation, y is conditioned on the trial variable, with an intercept (β0) and a
slope (β1) for the trial effect. This is something that you are all too familiar with by
now. Notice one extra bit, however: in equation E14.1, the intercept β0 bears the subin-
dex j. This subindex stands for ‘participant’ in this case. j=1 is one specific participant

Figure 14.1. � Response durations as a function of trial order (‘experiment time’) for three
different participants; Yasmeen and Logan speed up throughout the experi-
ment, Dan slows down; the bold line shows the population-level estimates
(across participants); the dashed lines represent the participant-specific ‘ran-
dom effect’ estimates; top row: a model with varying intercepts but not vary-
ing slopes tends to mischaracterize the participant-specific response patterns;
bottom row: a model with varying intercepts and varying slopes characterizes
the participant-specific trends more accurately

15034-2313q-3pass-r02.indd 235 10/3/2019 5:53:25 PM

DolanA
Highlight
Please confirm the symbol is the same size here as it is on the following page. The following page is correct.

DolanA
Highlight
Please confirm the symbol is the same size here as it is on the following page. The following page is correct.

DolanA
Highlight
Please confirm the symbol is the same size here as it is on the following page. The following page is correct.

236  Mixed Models 1: Conceptual Introduction

(Yasmeen), j=2 is another participant (Logan), and so on. The fact that the intercept
bears this subindex means that different participants have different intercepts. In other
words, there are different β0s for different js.

In the second model (E14.2), both the intercept and the slope bear the subindex,
which means that both coefficients differ between participants. Specifically, each par-
ticipant now also gets their own specific slope estimate. For example, for j=1 (Yas-
meen), the intercept β0 is 800ms and the slope β1 is –50. For j=2 (Logan), the intercept
β0 is 1000ms and the slope β1 is –90.

When people use the term ‘varying slopes’ or ‘random slopes’ model, this generally
subsumes ‘varying intercepts/random intercepts’. That is, it is assumed that, when you
let slopes vary, you also let intercepts vary.

Random effects are commonly contrasted with ‘fixed effects’. There’s nothing
special about fixed effects; these are just the predictors that you have dealt with all
throughout this book. In fact, throughout all chapters, you have been fitting fixed-
effects-only models. The only thing that changes when turning to mixed models is
that you can allow the relationship between y and a fixed effects predictor x to vary by
individual (varying slopes). Mixed models get their name from the fact that they mix
‘fixed effects’ and ‘random effects’.

What are some examples of common random effects in linguistics? In many areas
of linguistics, particularly psycholinguistics and phonetics, ‘participant’ and ‘item’ are
common random effects (see Baayen, Davidson, & Bates, 2008). An ‘item’ could be
anything from a visual stimulus in a picture-naming study to a sentence in a study on
sentence comprehension. The key thing here is that if there are multiple data points for
the same item, this introduces a dependency into your dataset that needs to be mod-
eled. In typology, common random effects include ‘language family’ and ‘language
contact area’ (Jaeger et al., 2011; Bentz & Winter, 2013; Roberts & Winters, 2013).
Unfortunately, mixed models aren’t generally used in corpus linguistics, even though
they are certainly necessary here as well, such as when there are multiple data points
from the same author, text, newspaper, or publishing outlet. Each of these grouping
factors could be a viable random effect in a corpus linguistic study.

Fixed effects are assumed to be constant across experiments. In this sense, they
are repeatable. You could, for example, repeat a study on gender differences by col-
lecting data with new female and male participants. While the individual participants
vary (and their individual differences are a source of ‘random’ influence on the data),
the gender effect can be tested again and again with new samples. The same way,
you could repeat a study on sensory modality differences (e.g., taste versus smell)
by selecting new words that differ along this dimension. The effects of ‘gender’ and
‘modality’ thus qualify as fixed effects because they are assumed to have a predictable,
non-idiosyncratic influence on the response that could be tested with new samples of
speakers or words.

Notice one more detail. While fixed effects can be continuous (Chapters 4–6) or cat-
egorical (Chapter 7), random effects are necessarily categorical. Why? Think about it
this way: the whole point of fitting a mixed model is to account for dependent clusters
of data points that somehow group together. The concept of a ‘group’ is a categorical
one. In the above example, the data points from Yasmeen stick together as a group,
and they are different from the data points of both Logan and Dan. The levels ‘Yas-
meen’, ‘Logan’, and ‘Dan’ are part of a categorical factor ‘participant’ in this case. To

15034-2313q-3pass-r02.indd 236 10/3/2019 5:53:25 PM

Mixed Models 1: Conceptual Introduction  237

see why random effects have to be categorical, it may also help to think from a sam-
pling perspective: sampling from a population, such as the population of all speakers,
involves sampling discrete units of that population.

14.5. � More on Varying Intercepts and Varying Slopes
Let’s delve more deeply into the topic of varying intercepts and varying slopes. We’ll
stick with the example of trial order, as discussed in the context of Figure 14.1. To
make this example look more realistic, let’s increase the sample size. I simulated data
from 40 different participants, each of which provided responses for 12 trials, which
yields a total of 480 different data points.

Figure 14.2a shows the fit of a simple linear regression model to this data, with no
random effects. This model has only one error term, which is represented by the histo-
gram of the residuals at the bottom of Figure 14.2a. The problem with this model is that
it doesn’t ‘know’ that many of these residuals are connected. In ignoring the fact that the
data comes from only 40 participants, the model treats each data point as independent.

Figure 14.2b shows a model with random effects, specifically varying intercepts.
The lines for the individual participants are shifted upwards and downwards, but they
are all parallel to the average estimate (thick black line). Each participant is allowed to
have their own intercept. You can think of this as assigning each participant a devia-
tion score which describes how much that person’s intercept deviates from the popu-
lation intercept. A positive deviation score for a particular individual shifts the entire
line for that individual upwards. A negative deviation score shifts it downwards. The
deviation scores are shown in the histogram at the bottom. Notice the ‘N’ written at the
bottom of this histogram, which indicates that this is a histogram of only 40 deviation
scores, in contrast to the overall residuals, which are as many as there are data points
in this dataset (N = 480) .

Figure 14.2. � The relationship between trial order and response durations for 480 data
points from 40 participants, modeled with (a) no random effects; (b) random
effects: varying intercepts; and (c) random effects: varying intercepts plus
varying slopes; gray lines correspond to individual participants

15034-2313q-3pass-r02.indd 237 10/3/2019 5:53:26 PM

238  Mixed Models 1: Conceptual Introduction

The problem with the model shown in Figure 14.2b is that it is inappropriate to
assume that all participant slopes are the same, which amounts to saying that there
are no individual differences for the trial order effect. Freeing the slopes from the
constraint to be parallel to the population line yields an additional 40 deviation scores
(Figure 14.2c). This time, the deviation scores describe deviations from the average
slope. Say the average trial effect across all participants was –10 and one particular
participant had an even steeper slope of –20. This participant would have a devia-
tion score of –10, representing how much this specific participant’s slope has to be
adjusted downwards from the overall slope. Conceptually, at least, you can think of
this as fitting individual regression lines for each participant.

There are a few more things to discuss in relation to Figure 14.2. First, it has to be men-
tioned that mixed models do not actually estimate one parameter per participant in this
dataset. Instead, mixed models estimate the variation around the specified random effect.
So, if you allow intercepts to vary by participants in your model, then this only adds one
term to your model. The parameter estimated by this term is a standard deviation that rep-
resents the by-participant variation around the overall intercept. If you then additionally
allow slopes to vary by participants, this adds another term. The number of histograms
below each sub-plot shows you how many variance terms are being estimated for the
models shown in Figure 14.2. Adding more participants would not add more histograms.

14.6. � Interpreting Random Effects and Random
Effect Correlations

The most widely used R package for mixed models in the language sciences is lme4
(Bates, Maechler, Bolker, & Walker, 2015). Have a look at the following lme4 model
formula, in which RT is modeled as a function of the fixed effect trial.

RT ~ trial + (1 + trial|participant)

The ‘RT ~ trial’ bit looks familiar. This is the fixed effects component of this
model, where response times are modeled as a function of the trial predictor. What’s
new is the random effect ‘(1 + trial|participant)’. In lme4 syntax, random
effects are always in brackets. The vertical bar ‘|’ bar inside the brackets can be para-
phrased in plain English as ‘conditioned on’ or ‘relative with respect to’. So, the expres-
sion ‘(1|participant)’ would instruct lme4 to estimate by-participant varying
intercepts because ‘1’ acts as a placeholder for the intercept (see Chapter 4.8). The expres-
sion ‘(1 + trial|participant)’ instructs the model to estimate by-participant
varying intercepts, as well as by-participant varying slopes. Fitting a linear mixed effects
model with this specification, you might get an output that looks like this (abbreviated):

Random effects:
 Groups Name Variance Std.Dev. Corr
 participant (Intercept) 1276.8 35.73
 trial 10.5 3.24 -0.38
 Residual 3678.0 60.65
Number of obs: 6000, groups: participant, 60

15034-2313q-3pass-r02.indd 238 10/3/2019 5:53:26 PM

Mixed Models 1: Conceptual Introduction  239

Fixed effects:
 Estimate Std. Error t value
(Intercept) 998.6023 4.8753 204.83
trial -9.9191 0.4192 -23.66

The top bit shows the estimates for the random effects component of the model;
the bottom bit shows the estimates for the fixed effects. The bottom table is what
you are used to seeing as the coefficients table in your linear model output. Let’s
focus on this first. In this case, response durations become shorter by about 10ms
for each additional trial. In other words: across the board, participants appear to
speed up throughout the experiment. Perhaps this is because they are learning to
adapt to the task. Let’s also observe the fact that the intercept in the fixed effects
component is about 1000ms, which is the predicted response duration for the zeroth
trial.

Let’s now focus on the random effects. Each standard deviation represented in the
output corresponds to one random effects parameter that is estimated by the model.
First, there is a standard deviation for by-participant varying intercepts. This standard
deviation is about 36ms, which describes the by-participant variation around the aver-
age intercept (1000ms). You can apply the 68%–95% rule from Chapter 3 to gauge
your intuition about these numbers. Given this rule, you expect 68% of the participant
intercepts to lie within the interval 964ms and 1036ms. The 95% interval spans from
928ms and 1072ms (the intercept plus and minus two standard deviations). The same
calculation can be done to gauge your intuition about the varying slopes. The standard
deviation of the by-participant varying slopes is about 3. Since the slope is about –10,
you expect about 68% of all participants to have slopes between –13 and –7. Con-
versely, you expect 95% of the slopes to lie between –16 and –4 (the slope plus and
minus two standard deviations).

Finally, the output additionally lists a correlation for the random effects, specifi-
cally a varying intercept/varying slope correlation term. This is actually an additional
parameter that is estimated. The fact that the estimated correlation between varying
intercepts and varying slopes is –0.38 indicates that higher intercepts had lower trial
slopes. This could be because those who start out slow at the beginning of the experi-
ment (high intercepts) have more opportunity to speed up (steeper slopes).

Intercept/slope correlations are not to be ignored. They contain useful informa-
tion about your data and can be theoretically interesting in many cases. Imagine you
performed an experiment where you measured participants’ accuracy as a function
of an interference task (a distractor task that interferes with cognitive function-
ing). If the task is too easy, the interference manipulation may have little effect. It
could happen that only the participants who found the task difficult to begin with
show a strong interference effect. Figure 14.3a shows a hypothetical dataset that
exemplifies this situation—a psycholinguist may describe this as a ‘ceiling effect’,
because participants perform ‘at ceiling’, leaving little room for the condition effect
to shine.

In such a situation, it could be the case that low accuracy intercepts are associ-
ated with more extreme interference effects. Taking the intercepts from Figure 14.3a
(the values in the ‘control’ condition) and plotting them against the slopes yields

15034-2313q-3pass-r02.indd 239 10/3/2019 5:53:26 PM

240  Mixed Models 1: Conceptual Introduction

Figure 14.3b, which shows a correlation of these two random effects. Participants
with higher intercepts (better performers) had interference effects closer to 0.

14.7. � Specifying Mixed Effects Models: lme4 syntax
Now that you know about varying intercept/varying slope correlations, I can give
you a more complete overview of the lme4 notation for the different kinds of ran-
dom effects structures that are commonly used in the language sciences, as shown in
Table 14.1. You as the user of mixed models decide whether you want to fit a random
intercept model (first row) or a random slope model (second row). In addition, you
have control about whether you want to estimate the intercept/slope correlation term
(second row) or not (third row).

As was mentioned before, what’s to the left of the vertical bar within each random
effect is allowed to vary by whatever factor is given to the right. Moreover, when
multiple terms are listed to the left of the same vertical bar, lme4 will estimate the
correlations between all of these terms. For example, when fitting the random effect
‘(1 + trial|participant)’, lme4 actually estimates three parameters—
namely, by-participant varying intercepts, by-participant varying slopes, and the cor-
relation between these two terms.

Using this notation blindly can result in a combinatorial explosion! Let’s demonstrate
this with an example, a case where a researcher wants to fit by-participant varying slopes
for two effects, A and B, as well as by-participant varying slopes in the interactions of
these two effects (i.e., it could be that the interaction is expressed differently across par-
ticipants). This random effects structure embodies the view that participants can vary in
both A and B, and the interaction can also vary by participants. The following random
effects structure looks rather concise:

(A * B|participant)

Figure 14.3. � (a) Accuracy as a function of interference; each line represents a particu-
lar participant; higher-performing participants exhibit interference effects
that are less steep; (b) plotting the varying intercepts against the varying
slopes shows a correlation; each data point represents the estimates from one
participant

15034-2313q-3pass-r02.indd 240 10/3/2019 5:53:26 PM

Mixed Models 1: Conceptual Introduction  241

However, even though the notation looks deceivingly concise, it actually estimates
10 different parameters:

•	 by-participant varying intercepts (‘1’)
•	 by-participant varying A slopes
•	 by-participant varying B slopes
•	 by-participant varying A:B interaction slopes
•	 correlation of varying intercepts and varying A slopes
•	 correlation of varying intercepts and varying B slopes
•	 correlation of varying intercepts and varying A:B interaction slopes
•	 correlation of varying A slopes and varying B slopes
•	 correlation of varying A slopes and varying A:B interaction slopes
•	 correlation of varying B slopes and varying A:B interaction slopes

The more explicit notation ‘(1 + A + B + A:B|participant)’ would make
some of this clearer, if you remind yourself that correlation terms are estimated for
everything to the left of the bar. To suppress these correlation terms, you would have
to use the following notation:

(1|participant) + (0 + A|participant) +
(0 + B|participant) + (0 + A:B|participant)

The ‘0’ in this notation stands for ‘do not fit an intercept’. The fact that the varying
intercepts and varying slopes occur in separate brackets is a way of noting that the two
should be estimated separately, thus excluding their correlation.

14.8. � Reasoning About Your Mixed Model: The Importance
of Varying Slopes

A question that comes up many times is: for which variables should one fit varying
slopes? You have already seen in Figure 14.1 (the example of Yasmeen, Logan, and
Dan) that omitting important varying slopes can lead to gross misrepresentations of
the data of particular participants. Within the context of the overall model, this also
means that the model doesn’t ‘know’ about the variation between participants, because
it wasn’t asked to estimate it. This will affect any inferences you want to make based

Table 14.1. � How to specify different kinds of random effects structures in lme4 syntax;
x is a generic placeholder for any fixed effects predictor (such as ‘trial order’,
‘frequency’, ‘condition’)

lme4 (short) lme4 syntax
(explicit)

Meaning

x +(1|ppt) 1 + x +(1|ppt) by-participant varying intercepts
x +(x|ppt) 1 + x +(1+x|ppt) by-participant varying intercepts and varying x

slopes, with slope/intercept correlation
x +(x||ppt) 1+ x +(1|ppt)+

(0 + x|ppt)
by-participant varying intercepts and varying x

slopes, without slope/intercept correlation

15034-2313q-3pass-r02.indd 241 10/3/2019 5:53:26 PM

242  Mixed Models 1: Conceptual Introduction

on these estimates. In particular, simulation studies have shown that mixed models
that fail to incorporate important varying slope terms can be grossly anti-conservative,
having Type I error rates much in excess of the accepted 0.05 threshold (Schielzeth &
Forstmeier, 2009).

Linguistics has an interesting history with respect to mixed models. After the
publication of Baayen et al. (2008) and Baayen (2008), mixed models took the
linguistic community by storm. However, many researchers defaulted to vary-
ing intercepts models, not even considering models with varying slopes—even
though it was already known in other fields that this was a problematic practice
(Schielzeth & Forstmeier, 2009). Barr et al. (2013) made the linguistic community
aware of issues that arise from ignoring important varying slopes. However, as a
result of their paper, the pendulum swung the other way, and linguists fitted overly
complex random effects structures. In particular, their paper used the slogan ‘keep
it maximal’ to argue that researchers should ‘maximize’ their random effects struc-
tures by adding varying slope terms for all critical variables in a study. However,
the recommendations by Barr et al. (2013) were often mistaken to suggest that
one should maximize blindly and fit varying slopes for every single fixed effect in
one’s study.

The ‘keep it maximal’ credo has received some backlash from Matuschek, Kliegl,
Vasishth, Baayen, and Bates (2017). As a blind rule to follow, the ‘keep it maximal’
credo often leads to estimation difficulties, which will be discussed in Chapter 15.
Moreover, maximal models may also have lower statistical power (see also Seedorff,
Oleson, & McMurray, 2019). The deeper problem, however, is that linguists want sim-
ple recipes. Before Barr et al. (2013), researchers often defaulted to varying intercepts
models. After Barr et al. (2013), researchers defaulted to ‘maximal’ models. However,
when it comes to statistical modeling, there are no strict recipes that can be followed
in all circumstances. Instead, you need to reflect on what the most appropriate model
is, given the data and given your theory (see Chapter 16).

This is a good opportunity to walk you through an example of how you can reason
about fitting a mixed model. Imagine a researcher is interested in testing whether a
simple training manipulation has an effect on reaction times. The condition in this
case has two levels: pre-test and post-test (after training). In addition, there are dif-
ferent items (say, words) that are repeated across participants. Two different items are
used for the pre-test, and two different items are used for the post-test. The following
provides a glance at this dataset.

 participant age item condition RT
 <chr> <dbl> <chr> <chr> <dbl>
1 P1 32 item1 pre 655
2 P1 32 item2 pre 577
3 P1 32 item3 post 615
4 P1 32 item4 post 625
5 P2 28 item1 pre 616
6 P2 28 item2 pre 596
7 P2 28 item3 post 660
8 P2 28 item4 post 596

15034-2313q-3pass-r02.indd 242 10/3/2019 5:53:26 PM

Mixed Models 1: Conceptual Introduction  243

The researcher then goes on to fit the following mixed effects model (using lme4
syntax):

	 RT ~ condition + age +
	 (1 + condition|participant) +
	 (1|item)

This model estimates fixed effects of condition and age, as well as by-partic-
ipant varying intercepts and by-participant varying condition slopes, including the
correlation of these terms. In addition, notice that there are varying intercepts for items
in this model, but not varying slopes.

Before determining whether you should have varying slopes for participants, you
need to determine whether you can fit them, for which you have to ask yourself the
following question: Does the relevant variable vary within individual? In the present
example, it is the case that participants have been exposed to both conditions. The fact
that there is variation within individuals for the relevant variable (pre-test and post-
test scores are both attested) makes it possible to fit varying slopes. The next question
is whether these should be fitted.

It seems quite unreasonable to assume that all participants in this study benefit
exactly the same way from the training. After all, people are different from each other
in all sorts of ways, and experience shows that some people benefit more from certain
training regimes than others. Thus, unless you really want to assume that there are no
by-participant differences in the training effect, fitting a varying slopes model seems
to be the preferred option. Notice that I’m not telling you to simply ‘maximize’ the
random effects structure. Instead, you are adding the by-participant varying slopes
because you have thought about the nature of your condition variable and concluded
that participants may differ in their condition effects. Thus, your model specification
was guided by your knowledge about the phenomenon at hand.

Next, let’s go on to the age fixed effect. Does age vary within individual? No, in this
case, it doesn’t. In the dataset shown above, each participant is of only one age, which
means that no varying slopes need to be considered. Notice that whether varying
slopes for age make sense depends on the structure of your experiment. For example,
if you conducted a longitudinal study where you observed the same individuals across
time, then age does vary within individuals, which means that it would be possible to
estimate by-participant varying slopes of age.

Next, let’s move on to the item effect. First of all, in this experiment, items are
repeated across individuals, which introduces dependencies. Something unique about
a particular item that is unpredictable from the perspective of the experiment may
influence all responses to that item, even if they come from separate participants. This
warrants including varying intercepts for item. What about by-item varying slopes? As
was mentioned above, different items were used for the pre- and post-test conditions
in this hypothetical study. As a result of this, condition does not vary within item (this
is what’s called a ‘between-items design’ rather than a ‘within-items design’) and no
by-item varying slopes need to be considered for the condition effect.

Finally, let us observe the fact that the age factor does vary within item. That is,
the same item is combined with different age values across the various participants in

15034-2313q-3pass-r02.indd 243 10/3/2019 5:53:26 PM

244  Mixed Models 1: Conceptual Introduction

this study. So, it is certainly possible to fit by-item varying slopes ‘(1+age|item)’.
However, not everything that can be estimated has to be estimated. Ask yourself a few
questions. Are there any compelling reasons to expect by-item varying age effects? Is
this theoretically motivated? The answers depends on the nature of the phenomenon
that you investigate. In the case of the model formula above, the researcher decided
not to estimate by-age varying item effects. Crucially, such a decision should be made
in advance, ideally before starting to investigate the data. Chapter 16 will talk more
about the ethical issues that arise in the context of specifying your models.

The point of this discussion is that you shouldn’t default to either varying intercepts
models, and neither should you default to having varying slopes for all variables in
your study. There’s no substitute for exercising your researcher judgment and thinking
about your model. Each term in your model, including the random effects, should be
theoretically justified.

14.9. � Chapter Conclusions
In this chapter, you’ve learned about an incredibly powerful new tool: mixed models.
These models allow modeling dependent data structures. The ‘workhorse’ for account-
ing for dependencies between data points are the random effects. I have guided you
through various constellations of these random effects, as well as through the syntax
of the most commonly used R package for mixed modeling, lme4. This syntax takes
some time to get used to, and the exercises in the next chapter will help you in this
respect.

The chapter concluded with a discussion of the importance of varying slopes: Type
I error rates increase drastically when important varying slopes are missed, which has
severe effects on the inferences you base on your models. Because of that, varying
slope terms need to be considered. However, there’s no simple rule as to which vary-
ing slopes should be included; you have to exercise scientific judgment and critically
reflect on what you think is the most appropriate model for a particular analysis, given
your knowledge of the phenomenon at hand.

15034-2313q-3pass-r02.indd 244 10/3/2019 5:53:26 PM

15.1. � Introduction
The last chapter provided a conceptual introduction to mixed models. This chapter
deals with implementation. I need to warn you: the lead-up to this chapter will be
rather tedious, as you will generate a reasonably complex dataset yourself, which
requires a lot of R programming. However, the conceptual pay-off of working with
generated data is that it allows you to see more clearly how different sources of vari-
ation are captured by a mixed model. Moreover, being able to create data like this
gives you a ‘ground truth’ to compare a mixed model to, a luxury that you usually
don’t have.1

15.2. � Simulating Vowel Durations for a Mixed
Model Analysis

In this section, you are going to simulate data that will then be analyzed with a mixed
model. By creating random data with exact specifications (such as, ‘participants differ
from each other with a standard deviation of 20ms’), you are able to assess the extent
to which a mixed model can retrieve this information.

Let me specify the desired structure of the data. You are going to simulate a hypo-
thetical experiment with six participants, each of which responds to 20 data points.2
These data points are the same 20 items repeated across participants. You will investi-
gate the effect of word frequency on vowel durations, where you expect more frequent
words to have shorter vowel durations.

Occasionally, we will use the tidyverse package in this chapter, so please load
this package again in case you have started a new R session:

1	 Being able to generate data yourself is also a stepping stone towards performing your own Type
I and statistical power simulations (see Kirby & Sonderegger, 2018; Brysbaert & Stevens, 2018).

2	 A study with six participants is clearly not a high-powered study. As a general rule of thumb, you
should never base any inferential statistics on just six participants. The whole concept of making
inferences to populations is a very flimsy one with a sample size that low, no matter whether you
obtain a significant result or not. However, for the sake of this example, it is useful to keep the
numbers low, because it makes it easier to discuss specific cases.

15	 Mixed Models 2
Extended Example, Significance
Testing, Convergence Issues

15034-2313q-3pass-r02.indd 245 10/3/2019 5:53:26 PM

246  Mixed Models 2

library(tidyverse)

So that your computer has the same random numbers, let us begin by setting the
seed value to a nice number.

Set seed value to make your examples match the book:

set.seed(666)

It is important that, from now on, you adhere to the strict sequence of the commands
in this chapter. If you execute one of the random number generation functions more
than once, you will be ‘out of sequence’ and get different numbers from those reported
in the book (not a big deal, but it may make it more difficult for you to see whether
you have implemented everything correctly). If you get stuck, simply re-execute eve-
rything up to that point, which should be easy if everything is in the same script.

Let’s start by generating participant and item identifiers. For this, the gl() function
comes in handy. The name of this function comes from ‘generate levels’; it generates fac-
tors for a specified number of levels. The first argument of this function specifies the num-
ber of levels; the second argument, how many times each level is repeated. The following
code generates participant identifiers for six participants, with each level repeated 20 times
(for the number of items in the study).

ppt_ids <- gl(6, 20)

Check:

ppt_ids

 [1] 1 2 2 2 2 2 2
 [27] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
 [53] 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
 [79] 4 4 5 6 6 6 6
[105] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Levels: 1 2 3 4 5 6

Next, use gl() to create 20 unique item identifiers:

Create 20 item identifiers:

it_ids <- gl(20, 1)

Check:

it_ids

 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
[17] 17 18 19 20
20 Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... 2

15034-2313q-3pass-r02.indd 246 10/3/2019 5:53:26 PM

Mixed Models 2  247

Since each participant responded to all of these items, and there are six participants,
this vector needs to be repeated six times. The ‘repeat’ function rep() was explained
in Chapter 8.3.

it_ids <- rep(it_ids, 6)

it_ids

 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 [18] 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 [35] 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11
 [52] 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8
 [69] 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5
 [86] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2
[103] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
[120] 20
20 Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 20

Each participant responds to the items 1 to 20. Let’s double-check that the partici-
pant and item identifier vectors have the same length.

length(ppt_ids) # 6 participants, each responds to 20 items

[1] 120

length(it_ids) # 20 items, each for 6 participants

[1] 120

Next, let’s create the word frequency predictor. Each word (item) should have its
own log frequency value. The rexp() function generates ‘random exponentially
distributed numbers’. The multiplication by five in the following command is just to
make the numbers look more like actual log frequency values (not an important step).

20 random numbers, rounded:

logfreqs <- round(rexp(20) * 5, 2)

logfreqs

[1] 2.74 9.82 0.70 0.05 2.76 17.57 13.06
[8] 7.62 10.38 3.11 14.71 1.62 0.13 3.06
[15] 3.80 15.70 1.12 0.53 1.38 3.05

Next, the logfreqs vector needs to be repeated six times, since there are six
participants.

Repeat frequency predictor 6 times:

logfreqs <- rep(logfreqs, 6)

15034-2313q-3pass-r02.indd 247 10/3/2019 5:53:26 PM

248  Mixed Models 2

Check length:

length(logfreqs)

[1] 120

Check content:

logfreqs

 [1] 2.74 9.82 0.70 0.05 2.76 17.57 13.06 7.62 10.38
 [10] 3.11 14.71 1.62 0.13 3.06 3.80 15.70 1.12 0.53
 [19] 1.38 3.05 2.74 9.82 0.70 0.05 2.76 17.57 13.06
 [28] 7.62 10.38 3.11 14.71 1.62 0.13 3.06 3.80 15.70
 [37] 1.12 0.53 1.38 3.05 2.74 9.82 0.70 0.05 2.76
 [46] 17.57 13.06 7.62 10.38 3.11 14.71 1.62 0.13 3.06
 [55] 3.80 15.70 1.12 0.53 1.38 3.05 2.74 9.82 0.70
 [64] 0.05 2.76 17.57 13.06 7.62 10.38 3.11 14.71 1.62
 [73] 0.13 3.06 3.80 15.70 1.12 0.53 1.38 3.05 2.74
 [82] 9.82 0.70 0.05 2.76 17.57 13.06 7.62 10.38 3.11
 [91] 14.71 1.62 0.13 3.06 3.80 15.70 1.12 0.53 1.38
[100] 3.05 2.74 9.82 0.70 0.05 2.76 17.57 13.06 7.62
[109] 10.38 3.11 14.71 1.62 0.13 3.06 3.80 15.70 1.12
[118] 0.53 1.38 3.05

Let us now put all three vectors (participant identifiers, item identifiers, frequen-
cies) into a tibble, naming the three columns participant, item, and freq.

Put predictors together:

xdata <- tibble(�ppt = ppt_ids, item = it_ids,
freq = logfreqs)

xdata

A tibble: 120 x 3
 ppt item freq
 <fct> <fct> <dbl>
 1 1 1 2.74
 2 1 2 9.82
 3 1 3 0.7
 4 1 4 0.05
 5 1 5 2.76
 6 1 6 17.6
 7 1 7 13.1
 8 1 8 7.62
 9 1 9 10.4
10 1 10 3.11
... with 110 more rows

15034-2313q-3pass-r02.indd 248 10/3/2019 5:53:26 PM

Mixed Models 2  249

This tibble contains all the predictors that are of interest to this analysis. Now you
need a response, and this is where things become interesting for thinking about how
mixed models work. Let’s start by specifying a column containing the intercept 300,
which seems like a realistic number for vowel duration. Let’s add this number to a
column called ‘int’.

xdata$int <- 300

It would be unreasonable to assume that each participant has the same intercept,
so let’s generate six deviation scores (one for each participant) that shift the grand
intercept up or down. Let’s assume that these deviation scores are normally distributed
with a standard deviation of 40 .

Generate varying intercepts for participants:

ppt_ints <- rnorm(6, sd = 40)

Check:

ppt_ints

[1] 0.8921713 -0.5763717 53.3142134 5.9370717 3.1084019
[6] 85.1702223

The sixth participant, for example, will have intercepts that are above the overall
intercept by about +85ms.

Before adding these varying intercepts to the tibble, you have to consider the fact
that the first 20 rows in the tibble are from participant 1, the next 20 rows are from par-
ticipant 2, and so on. You need to make sure that the first deviation score is repeated
20 times (for participant 1), then the second score is repeated 20 times (for participant
2), and so on. The each argument of the rep() function is used to specify that each
number should be repeated 20 times. This ensures that the varying intercepts match
up with the participant identifiers.

xdata$ppt_ints <- rep(ppt_ints, each = 20)

xdata

A tibble: 120 x 5
 ppt item freq int ppt_ints
 <fct> <fct> <dbl> <dbl> <dbl>
 1 1 1 2.74 300 0.892
 2 1 2 9.82 300 0.892
 3 1 3 0.7 300 0.892
 4 1 4 0.05 300 0.892
 5 1 5 2.76 300 0.892
 6 1 6 17.6 300 0.892
 7 1 7 13.1 300 0.892

15034-2313q-3pass-r02.indd 249 10/3/2019 5:53:27 PM

250  Mixed Models 2
 8 1 8 7.62 300 0.892
 9 1 9 10.4 300 0.892
10 1 10 3.11 300 0.892
... with 110 more rows

Next, you need to create varying intercepts for items, for which another 20 ran-
dom numbers are needed. Let’s say that the item standard deviation is 20ms, delib-
erately set to a smaller number than the variation across participants.3

Generate 20 varying intercepts for items:

item_ints <- rnorm(20, sd = 20)

Check content:

item_ints

 [1] 12.779092 5.386949 45.979387 -27.492918 13.247343
 [6] 9.670326 24.645837 -35.552503 17.710548 7.792605
[11] -12.492652 26.928580 27.854384 -8.894240 22.986354
[16] 16.369922 -33.103585 27.384734 15.164802 20.072252

As there are six participants, this vector of item intercepts needs to be repeated six
times.

Repeat item intercepts for six participants:

item_ints <- rep(item_ints, times = 6)

Check that length matches:

length(item_ints)

[1] 120

Add to tibble:

xdata$item_ints <- item_ints

The world isn’t perfect, and there’s always residual variation on top of participant
and item variation. So, let’s also add trial-by-trial noise, which you can do by generat-
ing 120 random numbers, one for each data point:

xdata$error <- rnorm(120, sd = 20)

3	 In my experience it is almost always the case that when you fit a mixed model to real experimental
data, participants are more different from each other than items, which results in larger standard
deviations for participant random effects than for item random effects.

15034-2313q-3pass-r02.indd 250 10/3/2019 5:53:27 PM

Mixed Models 2  251

Up to this point, we have only dealt with random variation. What about the actual
frequency effect? Let’s assume the slope is –5, which is embodying the assumption
that, for each increase in log frequency by 1, vowel durations decrease by 5ms.

xdata$effect <- (-5) * xdata$freq

Check:

xdata %>% head(4)

A tibble: 4 x 8
 ppt item freq int ppt_ints item_ints error effect
 <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 2.74 300 0.892 12.8 13.9 -13.7
2 1 2 9.82 300 0.892 5.39 -19.1 -49.1
3 1 3 0.7 300 0.892 46.0 22.8 -3.5
4 1 4 0.05 300 0.892 -27.5 -28.3 -0.25

Let’s behold what you have created. From left to right: participant identifiers (ppt),
item identifiers (item), frequency values (freq), an overall intercept (int), partic-
ipant-varying intercepts (ppt_ints), item-varying intercepts (item_ints), trial-
by-trial error (error), and the actual effect (effect). The information in columns
int to effect is everything that’s needed to create the response variable:

xdata <- mutate(xdata,
 dur = int + ppt_ints + item_ints +
 error + effect)

Thus, the dur response compresses many sources of variation into one numeri-
cal variable. As researchers in this hypothetical study, you would only have the dur
column available to you. You don’t have the luxury of knowing the true by-participant
and by-item variation. The mixed model’s task then is to identify the different sources
of variation.

Let’s dwell on this for a bit longer. I want you to realize that the information in the
dur column combines a ‘random’ part (ppt_ints, item_ints, error), as
well as a ‘systematic’ part (int, effect). The latter is what you’re used to from lin-
ear regression. The only new thing is that there are now participant- and item-specific
variations in the mix. It is the mixed model’s task to decompress this information and
estimate the individual variance components.

To make this dataset look more like an actual dataset from a real study, let us get
rid of those columns that were used to generate the data. By using the minus sign, the
select() function can also be used to exclude the consecutive columns from int
to effect.4 Let’s save this into a new tibble called xreal.

4	 If you get an error message when running the select() function call, chances are that you still
have the MASS library from Chapter 13 loaded. In that case, you can use: dplyr::select()
instead to resolve the naming conflict.

15034-2313q-3pass-r02.indd 251 10/3/2019 5:53:28 PM

252  Mixed Models 2

xreal <- select(xdata, -(int:effect))

xreal

A tibble: 120 x 4
 ppt item freq dur
 <fct> <fct> <dbl> <dbl>
 1 1 1 2.74 314.
 2 1 2 9.82 238.
 3 1 3 0.7 366.
 4 1 4 0.05 245.
 5 1 5 2.76 304.
 6 1 6 17.6 198.
 7 1 7 13.1 258.
 8 1 8 7.62 241.
 9 1 9 10.4 260.
10 1 10 3.11 298.
... with 110 more row

This looks like the data that you would get as a researcher who studies how
word frequency affects vowel durations. I want you to realize the complexity of
what’s going on ‘behind the scenes’ in this case, as I think this is the true concep-
tual pay-off of having generated the data yourself. You, as the researcher in this
case, would’ve only measured what’s in the dur column. But something as simple
as measuring durations is affected by a whole lot of different forces. In the next
section, you will learn how to use mixed models to help you tease apart what’s
going on.

In case you’re having trouble with the long sequence of commands up to this
point, here is all the code that is needed to recreate the data-generation pro-
cess. If all of the following code is executed sequentially, you will get the same
numbers:

set.seed(666)
ppt_ids <- gl(6, 20)
it_ids <- gl(20, 1)
it_ids <- rep(it_ids, 6)
logfreqs <- round(rexp(20) * 5, 2)
logfreqs <- rep(logfreqs, 6)
xdata <- tibble(ppt = ppt_ids, item = it_ids, freq = log-
freqs)
xdata$int <- 300
ppt_ints <- rnorm(6, sd = 40)
xdata$ppt_ints <- rep(ppt_ints, each = 20)
item_ints <- rnorm(20, sd = 20)
item_ints <- rep(item_ints, times = 6)
xdata$item_ints <- item_ints
xdata$error <- rnorm(120, sd = 20)
xdata$effect <- -5 * xdata$freq

15034-2313q-3pass-r02.indd 252 10/3/2019 5:53:28 PM

Mixed Models 2  253

xdata <- mutate(xdata,
 dur = int + ppt_ints + item_ints +
 error + effect)
xreal <- select(xdata, -(int:effect))

It makes sense to annotate the different steps with comments in your script.
Also, notice that I omitted those commands that merely check the results, such as
length(it_ids). Such commands are best for quick interactive checks in the con-
sole—they don’t have to be in the script, since they don’t produce any lasting changes.
Just in case you got lost somewhere in this long sequence of commands, the file ‘fre-
quency_vowel_duration.csv’ contains the xreal tibble.

15.3. � Analyzing the Simulated Vowel Durations
with Mixed Models

In this section, you’ll analyze the duration data with mixed models using the lme4
package.5 Let’s begin by loading the package into your current R session.

library(lme4)

The lmer() function is used for specifying mixed models. Let’s think about what
the model formula should look like. The response is dur (vowel durations), and
there’s only one fixed effect, freq. Thus, you know that one part of the formula will
be ‘dur ~ freq’, duration modeled as a function of the fixed effect frequency.

Let’s halt for a moment and think about why frequency should be a fixed effect. The
most obvious reason is that frequency is a continuous variable, and only categorical
variables can be random effects. An additional reason is that you expect frequency
to have a systematic influence on durations, one that you expect to find again if you
were to collect a new sample of participants and items (barring some sampling error).
Finally, you actually want to measure a coefficient for frequency (a slope), rather than
a standard deviation, as would be the case for a random effect.

Participant and item, on the other hand, are more appropriate as random effects.
Before you conducted the study, you didn’t know how specific participants and items
would behave—from the perspective of the experiment, their influence is unpredict-
able, or ‘random’. Rather than estimating separate parameters for specific participants
and items, this will estimate the variation around participants and items. Perhaps it
helps you to remember that you used the rnorm() function to generate the varying
intercepts for participants and items.

The following is a linear mixed effects model with a frequency fixed effect and vary-
ing intercepts for participants and items. To remind you of the notation ‘(1|ppt)’ and
‘(1|item)’: what is to the left of the vertical bar (in this case, the intercept represented
by ‘1’) varies by the thing to the right of the vertical bar.

5	� As the lme4 package receives constant updates, it may be the case that the exact results regarding
convergence issues discussed in this section may change.

15034-2313q-3pass-r02.indd 253 10/3/2019 5:53:28 PM

254  Mixed Models 2

xmdl <- lmer(dur ~ freq + (1|ppt) + (1|item),
 data = xreal, REML = FALSE)

What does the REML = FALSE mean? ‘REML’ stands for restricted maximum
likelihood. By setting this argument to FALSE, the model will use what’s called ‘max-
imum likelihood’ for estimation. This is a technical detail that is important when you
want to use mixed models for testing the significance of fixed effects using likelihood
comparisons (see Pinheiro & Bates, 2000), as will be done later in this chapter.

Now that you have the model saved, it’s time to inspect it.

summary(xmdl)

Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: dur ~ freq + (1 | ppt) + (1 | item)
 Data: xreal

 AIC BIC logLik deviance df.resid
 1105.1 1119.0 -547.5 1095.1 115

Scaled residuals:
 Min 1Q Median 3Q Max
-2.09700 -0.60946 0.06483 0.60761 2.39754

Random effects:
 Groups Name Variance Std.Dev.
 item (Intercept) 589.2 24.27
 ppt (Intercept) 1296.6 36.01
 Residual 284.0 16.85
Number of obs: 120, groups: item, 20; ppt, 6

Fixed effects:
 Estimate Std. Error t value
(Intercept) 337.973 16.735 20.196
freq -5.460 1.004 -5.438

Correlation of Fixed Effects:
 (Intr)
freq -0.339

The output reminds you that you fitted a linear mixed effects model with maxi-
mum likelihood (REML = FALSE), and it also restates the model formula. Follow-
ing this, there are some general measures of model fit (Aikaike’s Information Criterion,
Bayesian Information Criterion, log likelihood, and the degrees of freedom). At this
stage, these numbers do not concern us much. However, it’s worth mentioning that the
‘df.resid’ represents the residual degrees of freedom, which are the number of
data points minus the number of estimated parameters. This turns out to be 115, as the
model was fitted to 120 data points and estimated five parameters. In this case, each
estimated parameter corresponds to a row in the random effects output (item, ppt, and
Residual), as well as to a row in the fixed effects output ((Intercept) and freq).

15034-2313q-3pass-r02.indd 254 10/3/2019 5:53:28 PM

Mixed Models 2  255

Let’s first focus our eyes on the fixed effects estimates. First of all, the intercept
in the fixed effects component is about 340ms, which means that, for a log fre-
quency of 0, this model predicts vowels to be 340ms long. The frequency slope is
negative (–5.46) and very close to what was specified during data generation. The
usual interpretation to slopes applies in this case: for each increment in frequency
by one unit, vowels become about 5ms shorter.

Let’s put the fixed effects coefficients into a familiar format:

duration frequency= + −() ×338 5 � (E15.1)

Just as you did in other chapters, I invite you to plug some numbers into this equa-
tion to see what it predicts. For example, for a word frequency of 10, the equation
becomes duration = 338ms − 50ms, which is 288ms. Thus, for a word frequency of
10, vowels are predicted to be 288ms long.

Let’s move our eyes over to the random effects components. Notice that the esti-
mate of the by-participant variation in intercepts (36.01) is larger than the by-item
variation in intercepts (24.287) and the residual variation (16.85), just as was
specified during data generation

15.4. � Extracting Information out of lme4 Objects
It’s a good idea to learn about a few subsidiary functions that can be used to extract
information from fitted mixed model objects. First, the fixef() function spits out
the estimated fixed effects coefficients.

fixef(xmdl)

(Intercept) freq
 337.973044 -5.460115

fixef(xmdl)[2] # extract slope

freq
-5.460115

The following command retrieves the coefficient table from the summary output.6
Unfortunately, the broom package for tidy regression output doesn’t work so well for
mixed models.

summary(xmdl)$coefficients

 Estimate Std. Error t value
(Intercept) 337.973044 16.734965 20.195624
freq -5.460115 1.004059 -5.438042

6	 In case you didn’t know that the coefficients information in the summary output can be retrieved
by $coefficients, the str() function helps: str(summary(xmdl)). The str() function
shows the general structure of any R object you apply it to.

15034-2313q-3pass-r02.indd 255 10/3/2019 5:53:28 PM

256  Mixed Models 2

What happens if you apply coef()to the model object?

coef(xmdl)

$item
 (Intercept) freq
1 352.2840 -5.460115
2 325.2502 -5.460115
3 370.0176 -5.460115
4 302.6063 -5.460115
5 349.9889 -5.460115
6 338.9433 -5.460115
7 362.7144 -5.460115
8 295.8086 -5.460115
9 333.0941 -5.460115
10 331.7932 -5.460115
11 324.7939 -5.460115
12 350.1699 -5.460115
13 353.0408 -5.460115
14 311.9676 -5.460115
15 353.9778 -5.460115
16 353.9778 -5.460115
17 289.0330 -5.460115
18 362.3463 -5.460115
19 338.1415 -5.460115
20 359.6313 -5.460115

$ppt
 (Intercept) freq
1 315.3049 -5.460115
2 301.6252 -5.460115
3 363.4343 -5.460115
4 318.0924 -5.460115
5 324.4672 -5.460115
6 404.9142 -5.460115

attr(,"class")
[1] "coef.mer"

The function spits out the random effects estimates for specific participants and
items. Notice that, when applied to mixed models, the coef() function behaves dif-
ferently than in the context of lm(). For linear models, the function returns the fixed
effects coefficients; for linear mixed effects models, it returns the random effects esti-
mates! The coef() output is a list, with one list element for every grouping factor.
Each list element contains a data frame, which you can retrieve via the dollar sign ‘$’.
The following command extracts the data frame with the random effects estimates for
the individual participants.

15034-2313q-3pass-r02.indd 256 10/3/2019 5:53:28 PM

Mixed Models 2  257

coef(xmdl)$ppt

 (Intercept) freq
1 315.3049 -5.460115
2 301.6252 -5.460115
3 363.4343 -5.460115
4 318.0924 -5.460115
5 324.4672 -5.460115
6 404.9142 -5.460115

The slowest speaker is participant 6 (a high intercept of around 405ms); the fastest
speaker is participant 2 (around 302ms). Whereas there are different numbers for each
participant, the numbers in the frequency column are all the same. This is because this
is a varying intercept, but not a varying slope model. The frequency effect does not vary
across participants; it’s assumed to be fixed. By-participant variation in frequency slopes
is not estimated, because the model hasn’t been specified to look for random slopes.

The ranef() function is similar to coef(), but it spits out the deviations from
the intercept, rather than the actual intercept estimates. You can then see, for example,
that participant 6 is estimated to have an intercept that is +67ms above the grand inter-
cept, making this participant a slow speaker.

ranef(xmdl)$ppt

 (Intercept)
1 -22.66813
2 -36.34780
3 25.46129
4 -19.88066
5 -13.50587
6 66.94117

15.5. � Messing up the Model
Let’s play a bit more with different model specifications. I don’t recommend ‘play-
ing’ with different models in any actual data analysis (see Chapter 16), since you
should usually have decided about your model in advance of conducting a data analy-
sis (based on theoretical reasoning). However, for demonstration purposes only, it’ll
be useful to use to see what goes wrong if you ‘mess up’ the model.

For example, what if you were to drop the term for estimated by-item varying inter-
cepts? Let’s call the resulting model xmdl_bad.

Fit model that drops important item-varying intercepts:

xmdl_bad <- lmer(dur ~ freq + (1|ppt),
 data = xreal, REML = FALSE)

Check output:

summary(xmdl_bad)

15034-2313q-3pass-r02.indd 257 10/3/2019 5:53:28 PM

258  Mixed Models 2
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: dur ~ freq + (1 | ppt)
 Data: xreal

 AIC BIC logLik deviance df.resid
 1182.1 1193.2 -587.0 1174.1 116

Scaled residuals:
 Min 1Q Median 3Q Max
-2.6270 -0.6397 0.1089 0.7462 1.9778

Random effects:
 Groups Name Variance Std.Dev.
 ppt (Intercept) 1240.8 35.23
 Residual 877.6 29.62
Number of obs: 120, groups: ppt, 6

Fixed effects:
 Estimate Std. Error t value
(Intercept) 337.9730 14.8829 22.71
freq -5.4601 0.4813 -11.34

Correlation of Fixed Effects:
 (Intr)
freq -0.183

First, notice that you are now estimating one parameter less, as reflected in the
‘df.resid’ having changed from 115 to 116. As there are 120 data points, this
shows that there are four parameters being estimated in this case (120 − 4 = 116). This
is also shown by the fact that there is one row less in the random effects component
of the output.

Notice, furthermore, that the residual standard deviation has almost doubled
compared to the previous model, increasing from ~17ms to ~30ms. Finally, notice
that the standard error of the frequency coefficient has halved (from SE = 1.0
to SE = 0.48). Taken at face value, this would suggest that your accuracy in
estimating the slope has increased by dropping the item random effects. How-
ever, in fact, this is just your model becoming more anti-conservative, because it
doesn’t ‘know’ about important sources of variation in the data (as discussed in
Chapter 14).

Next, what happens if you add by-participant-varying slopes to the model? Let us
add by-participant varying slopes to a model that we call xmdl_slope.7 Below, you
look at only the random effects output, which can be extracted by adding $varcor
to the summary() output.

7	 Items cannot vary in the slope of frequency, because each item has only one frequency value. So it
makes no sense to estimate by-item varying slopes in this particular case.

15034-2313q-3pass-r02.indd 258 10/3/2019 5:53:28 PM

Mixed Models 2  259

Fit model with frequency slope:

xmdl_slope <- lmer(dur ~ freq + (1 + freq|ppt) + (1|item),
data = xreal, REML = FALSE)

boundary (singular) fit: see ?isSingular

summary(xmdl_slope)$varcor

 Groups Name Std.Dev. Corr
 item (Intercept) 24.27168
 ppt (Intercept) 35.25896
 freq 0.12109 1.000
 Residual 16.83902

The warning message on ‘singular fits’ suggests that there are some problems with
this model. Estimating varying slopes added an additional line to the random effects
output. Notice that the estimated standard deviation across varying slopes is very
small. Why is this? Well, you didn’t specify any varying slopes when the data was
constructed! Remember that you added by-participant and by-item varying intercepts,
but you didn’t make slopes dependent on participants. Nevertheless, this model tries to
estimate by-participant variation in frequency slopes. The fact that there is any variance
that can be attributed to this at all is a by-product of adding random noise to the data.

There’s a hint in this output which indicates that this model fits badly. Notice that the
varying slope intercept/correlation is indicated to be exactly +1. If this were true, this would
mean that higher intercepts always (deterministically) go together with higher frequency
slopes (the correlation is indicated to be negative). Perfect correlations never happen in
linguistic data. This seems suspicious. It turns out that lme4 sometimes fixes random effect
correlation terms to +1.0 or –1.0 if these cannot be estimated (Bates et al., 2015; see also
discussion in Vasishth, Nicenboim, Beckman, Li, & Kong, 2018). In other words, exact cor-
relations like this are a warning flag that suggests estimation problems. This also relates to
the ‘singular fit’ message in the output above (see discussion below on convergence issues).

You can also check the random effects estimates of this model, which reveals that,
although the frequency slopes are now slightly different from each other, there is very
little variation between participants in their respective slopes.

coef(xmdl_slope)$ppt

 (Intercept) freq
1 315.7932 -5.536287
2 302.3495 -5.582457
3 362.9137 -5.374462
4 318.3863 -5.527382
5 324.7295 -5.505597
6 403.6660 -5.234507

Let us now specify a model with the de-correlated random effects structure. As was
mentioned in the previous chapter, this is achieved by separating the intercept and

15034-2313q-3pass-r02.indd 259 10/3/2019 5:53:28 PM

260  Mixed Models 2

slope terms into separate brackets. You use the zero character in (0 + freq|ppt)
to signal that you’re removing the intercept for this term.

xmdl_slope_nocorr <- lmer(dur ~ freq +
 (1|ppt) + (1|item) +
 (0 + freq|ppt),
 data = xreal, REML = FALSE)

boundary (singular) fit: see ?isSingular

summary(xmdl_slope_nocorr)$varcor

 Groups Name Std.Dev.
 item (Intercept) 24.288
 ppt freq 0.000
 ppt.1 (Intercept) 36.004
 Residual 16.852

The correlation term has disappeared, but in this case, the frequency slope is esti-
mated to have a standard deviation of exactly 0.0, which means that it could not be
estimated. This is also apparent when checking the random effects with coef(),
where all slopes in the freq column are the same.

coef(xmdl_slope_nocorr)$ppt

 (Intercept) Freq
1 315.3049 -5.460115
2 301.6253 -5.460115
3 363.4343 -5.460115
4 318.0924 -5.460115
5 324.4672 -5.460115
6 404.9142 -5.460115

It is important to dwell on this point a little longer. Yet again, there was no error
or warning message; nevertheless lme4 failed to estimate the by-participant vary-
ing slopes. If you didn’t inspect the random effects structure in detail, this would go
unnoticed. You may have reported this as a random slope model, even though in fact
random slopes weren’t estimated.

15.6. � Likelihood Ratio Tests
This section teaches you how to perform likelihood ratio comparisons (otherwise
known as ‘deviance tests’) to perform significance tests with mixed models. A like-
lihood ratio test compares the likelihood of one model to the likelihood of another
model. What’s the likelihood? In everyday language, the terms ‘probability’ and
‘likelihood’ are often used interchangeably. In statistics, however, these two differ
in meaning. The term ‘probability’ describes the probability of a particular outcome
given a parameter. For example, how probable it is to observe a count of 3 given a
Poisson with λ = 2. The likelihood describes the plausibility of particular parameter

15034-2313q-3pass-r02.indd 260 10/3/2019 5:53:28 PM

Mixed Models 2  261

values, given a set of data. For example, how likely is the parameter λ = 2 given
an observed count of 3? Mixed models are estimated using ‘maximum likelihood
estimation’, i.e., they find the parameter estimates that are most likely, given a set of
observations.

If you wanted to compute the significance of the freq fixed effect, you need to
compare a model with this effect against a model without it, which is an intercept-only
model in this case:

xmdl_nofreq <- lmer(dur ~ 1 + (1|ppt) + (1|item),
 data = xreal, REML = FALSE)

The anova() function is used to perform model comparisons. The name of this
function comes from ‘analysis of variance’ (see Chapter 11.3), but this function actu-
ally performs a likelihood ratio test when applied to mixed models. The only two
arguments needed are the two models to be compared:8

anova(xmdl_nofreq, xmdl, test = 'Chisq')

Data: xreal
Models:
xmdl_nofreq: dur ~ 1 + (1 | ppt) + (1 | item)
xmdl: dur ~ freq + (1 | ppt) + (1 | item)
 Df AIC BIC logLik deviance Chisq Chi Df
xmdl_nofreq 4 1121.0 1132.2 -556.51 1113.0
xmdl 5 1105.1 1119.0 -547.55 1095.1 17.933 1
 Pr(>Chisq)
xmdl_nofreq
xmdl 2.288e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p -value is very small (2.288e-05), which means the following: under the
null hypothesis that the two models are the same, the actually observed difference in
likelihood between the two models is surprising. In other words, there is sufficient
evidence against the null hypothesis of model equivalence. In this output, the degrees
of freedom next to each model indicate the number of estimated parameters, and
the degrees of freedom associated with the Chi-Square value is the difference in the
number of estimated parameters between the two models. This turns out to be 1 in
this case, as one model estimates five parameters and the other model estimates four
parameters.

8	 The test = 'Chisq' argument can actually be dropped (it is the default for mixed models), but
I prefer to leave it in for clarity. You may wonder what this argument means. This is very technical
(so feel free to skip this), but it turns out that −2 times the log likelihood difference between two
models is approximately Chi-Square distributed. In Chapter 9, you saw the t-distribution, which
is the distribution for the t-test statistic under the null hypothesis. Similarly, there is a Chi-Square
distribution, for which the area under the curve also yields a p-value.

15034-2313q-3pass-r02.indd 261 10/3/2019 5:53:29 PM

262  Mixed Models 2

The result of this likelihood ratio test can be written up as follows: ‘A likelihood ratio
test of the model with the frequency effect against the model without the frequency
effect revealed a significant difference between models (� 2 1 17 93 0 0001� � � �. , .p).’
Or perhaps, if you stated earlier in the paper that all p-values were generated via
likelihood ratio tests, you could just say ‘There was a significant effect of frequency
(� 2 1 17 93 0 0001� � � �. , .p).’ Notice that the degrees of freedom goes inside the brack-
ets after the Chi-Square value.

For many experimental situations, you want to keep the random effects structure
constant across comparisons. Sometimes, however, it may be useful to test for the
significance of particular random effects. When doing this, f one should use ‘restricted
maximum likelihood’ (REML = TRUE) rather than maximum likelihood (Pinheiro &
Bates, 1980). First, let’s create two models that only differ in terms of their random
effects structure.

Full model:

x_REML <- lmer(dur ~ freq + (1|ppt) + (1|item),
 data = xreal, REML = TRUE)

Reduced model (no item-varying intercepts):

x_red <- lmer(dur ~ freq + (1|ppt),
 data = xreal, REML = TRUE)

Second, let’s perform the model comparison. However, since the default of
anova() is to fit models with REML = FALSE, the argument refit = FALSE is
needed to prevent refitting the models.

anova(x_red, x_REML, test = 'Chisq', refit = FALSE)

Data: xreal
Models:
x_red: dur ~ freq + (1 | ppt)
x_REML: dur ~ freq + (1 | ppt) + (1 | item)
 Df AIC BIC logLik deviance Chisq Chi Df
x_red 4 1174.4 1185.5 -583.2 1166.4
x_REML �5 1095.8 1109.7 -542.9 1085.8 80.608 1
	 Pr(>Chisq)
x_red
x_REML < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output shows a significant p-value, which suggests that dropping the item
random effect leads to a significant decrease in likelihood. In other words, there is

15034-2313q-3pass-r02.indd 262 10/3/2019 5:53:30 PM

Mixed Models 2  263

sufficient evidence against the null hypothesis of model equivalence, or, the random
effect is ‘significant’.

For complex models with many fixed effects, it may be quite cumbersome to derive
p-values for each predictor via likelihood ratio tests, as this requires specifying many
null models. The mixed() function from the afex package (Singmann, Bolker,
Westfall, & Aust, 2016) performs likelihood ratio tests automatically for all fixed
effects when the argument method = 'LRT' is specified. The model also automati-
cally sum-codes categorical predictors (see Chapter 7) and warns you of continuous
predictors that haven’t been centered (see Chapter 5), as this makes the interpretation
of interactions difficult (Chapter 8).

library(afex)

xmdl_afex <- mixed(dur ~ freq + (1|ppt) + (1|item),
data = xreal, method = 'LRT')

Contrasts set to contr.sum for the following variables:
ppt, item
Numerical variables NOT centered on 0: freq
If in interactions, interpretation of lower order (e.g.,
main) effects difficult.
REML argument to lmer() set to FALSE for method = 'PB' or
'LRT'
Fitting 2 (g)lmer() models:
[..]

Typing xmdl_afex presents a table of the likelihood ratio test results.

xmdl_afex

Mixed Model Anova Table (Type 3 tests, LRT-method)
Model: dur ~ freq + (1 | ppt) + (1 | item)
Data: xdata
Df full model: 5
 Effect df Chisq p.value
1 freq 1 17.93 *** <.0001

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

The xmdl_afex object created by the mixed() function contains the full model
as well as all ‘nested’ models that were used for likelihood ratio tests. One can index
the full model with $full_model, such as in the following command:

fixef(xmdl_afex$full_model)

(Intercept) freq
 337.973044 -5.460115

15034-2313q-3pass-r02.indd 263 10/3/2019 5:53:30 PM

264  Mixed Models 2

When performing model comparisons with likelihood ratio tests, it is a requirement
that the comparison models are ‘nested’, which means that when a reduced model is
compared to a full model, the reduced model needs to also be a part of the full model.
This is best illustrated with an example. Let’s assume the following is your full model
(ignoring any random effects for the time being):

y ~ A + B

This full model can be compared against either one of the following two models:

y ~ A

y ~ B

This is because the terms in these reduced models are also contained in the full
model. However, for reasons not discussed here, you cannot use likelihood ratio tests
to compare ‘y ~ A’ and ‘y ~ B’, as these models are not nested within each other.

15.7. � Remaining Issues

15.7.1.  R2 for Mixed Models

You may have noticed that the linear mixed effects model output does not list
R2-values. You can use the r.squaredGLMM() function from the MuMIn package
(Bartoń, 2017) to generate R2 values for mixed models. The following code applies
this function to the full model from the afex model object.

library(MuMIn)

r.squaredGLMM(xmdl_afex$full_model)

 R2m R2c
0.3043088 0.9089309

R2m is the ‘marginal R2’ value and characterizes the variance described by the fixed
effects. R2c is the ‘conditional R2’ value and characterizes the variance described by
both fixed and random effects (see Nakagawa & Schielzeth, 2013). It’s worth not-
ing that r.squaredGLMM()can be used on generalized linear models that are not
mixed models, such as the simple logistic and Poisson regression models we discussed
in Chapters 12 and 13.

15.7.2.  Predictions from Mixed Models

The following code uses the model discussed earlier to create predictions for a
sequence of numbers ranging from 0 to 18 in a step-size of 0.01. The predictions are
generated using the equation y b b freq= +0 1 * .

xvals <- seq(0, 18, 0.01)

yvals <- fixef(xmdl_afex$full_model)[1] +

15034-2313q-3pass-r02.indd 264 10/3/2019 5:53:32 PM

Mixed Models 2  265

 fixef(xmdl_afex$full_model)[2] * xvals

head(yvals)

[1] 337.9730 337.9184 337.8638 337.8092 337.7546 337.7000

However, getting confidence intervals for these predictions is more involved and
won’t be covered in this book. For this, I recommend having a look at the emmeans
package (Lenth, 2018). In addition, the mixed models wiki (http://bbolker.github.io/
mixedmodels-misc/glmmFAQ.html [accessed October 22, 2018]) contains helpful
information, as well as code for generating predictions that can be adapted to specific
models.

15.7.3.  Convergence Issues

With lme4, you will frequently run into what are called ‘convergence issues’. The
procedures used to estimate mixed models sometimes do not reach a stable solution;
or they reach a stable solution only for a subpart of the parameter space that turned
out to be estimable. To understand how this happens, it helps to have a rough mental
image of how likelihood estimation works.

Imagine the following scenario: you are being parachuted into an unknown
landscape with the task of finding the biggest hill.9 But there’s a catch: you have to
find the hill being blindfolded, which means that you cannot simply walk towards
the hill. In the absence of sight, one possible approach of finding the hill is to per-
form a step in a random direction and notice whether your height has increased. If
the step has led to an increase in height, stay there and make this your new starting
point for the next random step. If the step didn’t lead to a noticeable change in
height, or perhaps even a reduction, go back one step. This procedure can converge
on the hill.

In likelihood estimation, then, the hill is the maximum likelihood estimate, and the
blindfolded parachutist following a particular set of instructions is the optimization
algorithm that searches for the hill. The same way that the blindfolded parachut-
ist cannot see the hill from a distance, your mixed model doesn’t know in advance
for which parameter estimates you will obtain the maximum likelihood estimate. So
different parameter values are explored by the algorithm to see whether they lead
to a noteworthy increase or decrease in likelihood, until a stable solution has been
reached.

The more parameters you ask your models to estimate, the more complex the esti-
mation problem becomes. This can be likened to a situation where the blindfolded
explorer has to explore an increasingly unwieldy landscape in ever more directions.
It could happen that, no matter in which direction the parachutist walks, there is no
noteworthy change in height, or there the height changes too drastically for each step.

If convergence isn’t reached, lme4 will often spit out a convergence warning. How-
ever, as you have already seen in this chapter, there are also estimation problems with-
out any warnings. This is why it is absolutely crucial to investigate the random effects

9	 I first heard about this analogy in Sarah Depaoli’s stats class at UC Merced.

15034-2313q-3pass-r02.indd 265 10/3/2019 5:53:32 PM

266  Mixed Models 2

structure—for example, using functions such as coef(), and checking that random
effect correlation parameters are appropriately estimated (not exactly 0, 1, or –1).

In general, the more complex a model is relative to the size of a dataset, the more
difficult it is to estimate models. Convergence issues often arise from trying to fit
overly complex models to sparse data; however, they may arise from other issues as
well. The problem is that a textbook cannot give you a ‘one-size-fits-all’ solution to all
convergence issues. This is because a convergence issue always stems from the unique
combination of the data and the model. It’s impossible to give clear recommendations
that will apply to all cases.

A useful starting point is the following help page on convergence issues from the
lme4 package.

?convergence

Some of the recommendations mentioned on that page are worth highlighting here.
First, centering and/or scaling continuous variables often facilitates convergence (and
sum-coding may achieve similar effects in some cases). Second, you can change
the optimizer (the procedure that is used to estimate the model) using the argument
lmerControl. The help page ?lmerControl provides useful information on
changing the optimizing algorithm. In addition, consider running the all_fit()
function from the afex package on your model. This function refits a model for a
whole range of optimization algorithms (“optimizers"), each time assessing conver-
gence. The model will tell you for which optimizers convergence was reached.

However, more fundamentally, obtaining a convergence warning invites you to
think about a given model and the structure of your data more deeply. For example,
it may be that you have misspecified the model, such as asking the model to estimate
varying slopes for a fixed effect that does not actually vary for that grouping factor.
There may also be imbalances or sparsity in the dataset worth thinking about. For
example, is there perhaps a participant or item with lots of missing values?

As a last resort, you may have to consider simplifying the model. In some cases, the
data just is not informative enough to support a specific model (for a linguistic exam-
ple, see Jaeger et al., 2011). You will often find that random slopes are the cause of
many convergence issues. Importantly, you should not drop random slopes lightheart-
edly, as this is known to increase the Type I error rate (see Barr et al., 2013; Seedorff,
Oleson, & McMurray, 2019). An intermediate solution is to explore whether the model
converges with a random effects structure for which there is no slope/intercept correla-
tion term. For example, for the factor ‘condition’, one could fit ‘(1|subject) +
 (0 + condition|participant)’ instead of ‘(1 + condition|subject)’.
While some simulation studies show this to be an appropriate intermediate solution
(Seedorff et al., 2019), one cannot say that this is a ‘safe’ strategy in all circumstances,
as this depends on whether there are actually slope/intercept correlations in the data.

Another potential solution to convergence issues is to aggregate the data, e.g., com-
puting averages per some grouping factor in the study, such as by-participant aver-
ages. While this can be an appropriate solution in some circumstances (see Seedorff
et al., 2019), it is a fundamental change of analysis approach that has several important

15034-2313q-3pass-r02.indd 266 10/3/2019 5:53:32 PM

DolanA
Highlight
curly quotes please

Mixed Models 2  267

ramifications. Among other things, averaging over trials, one loses the ability to make
trial-level predictions, and those sources of variation that are averaged out are simply
ignored, even though they may be theoretically important. In addition, this approach
generally reduces statistical power.

It turns out that Bayesian mixed models allow dealing with non-convergence in
a much more principled fashion, and many estimation problems can be avoided
(Eager & Roy, 2017). These models will not be covered in this book, but the reader is
advised to consider Vasishth et al. (2018) for a tutorial introduction to Bayesian mixed
models (see also Nicenboim & Vasishth, 2016). For a general introduction to Bayesian
statistics focusing on conceptual issues, see Dienes (2008). A comprehensive intro-
duction to Bayesian statistics with R is presented in McElreath (2016).

It’s best if you can pre-empt convergence issues at the design stage of your study
by making sure that there is lots of data. Chapter 10 talked about how important it is
to conduct high-powered studies (to avoid Type II errors, Type M errors, and so on).
So here is yet another reason for collecting more data: it alleviates convergence issues
because, with more informative data, more complex models can be estimated.

15.8. � Mixed Logistic Regression: Ugly Selfies
I want to conclude with one example analysis of a real dataset. This example exempli-
fies convergence issues, as well as how to fit mixed logistic regression models. Every-
thing you have learned about generalized linear mixed effects models in Chapters 12
and 13 carries over to the case of mixed effects models. If you want to fit a Pois-
son regression or logistic regression, use glmer() instead of lmer() and specify
family = 'poisson' or family = 'binomial'.

You will be analyzing a small subset of unpublished data that Ruth Page (University
of Birmingham) and I collected together. This study investigates ‘ugly selfies’: people
(especially young folks) take pictures in which they portrait themselves as ugly. This
phenomenon is theoretically interesting to pragmatics and discourse analysis, as it
involves such theoretical constructs as sarcasm and the communication of intimacy.
In the experiment we conducted, we were interested whether selfies with different
camera angles (either ‘from below’ or ‘level’) were perceived as more or less ugly.
Let’s have a look at the data:

selfie <- read_csv('ruth_page_selfies.csv')

selfie

A tibble: 1,568 x 3
 Angle UglyCat ID
 <chr> <chr> <chr>
 1 FromBelow ugly ppt_1
 2 FromBelow not_ugly ppt_1
 3 Level not_ugly ppt_1
 4 Level not_ugly ppt_1

15034-2313q-3pass-r02.indd 267 10/3/2019 5:53:32 PM

268  Mixed Models 2
 5 FromBelow not_ugly ppt_1
 6 FromBelow not_ugly ppt_1
 7 Level not_ugly ppt_1
 8 Level not_ugly ppt_1
 9 FromBelow not_ugly ppt_1
10 FromBelow not_ugly ppt_1
... with 1,558 more rows

The column that contains the response is called UglyCat, which stands for ‘ugly
categorical’.10 The column that contains the predictor is called Angle. Participant
identifiers are in the column ID. Each participant delivered multiple responses, which
introduces dependencies. Therefore, a mixed model is needed. Moreover, since the
response is categorical, a mixed logistic regression model is needed.

Before fitting a mixed logistic regression model, the UglyCat column needs to be
converted into a factor (see Chapter 12.6.2).

selfie <- mutate(selfie, UglyCat = factor(UglyCat))

What should the model formula be? As the main research question is whether
ugly judgments are influenced by the camera angle, the formula should contain
‘UglyCat ~ Angle’. With respect to the random effects structure, random intercepts are
clearly needed, as it is plausible that some participants may have overall more or less ‘ugly’
judgments. So, at a bare minimum, the mixed model needs to also contain the term (1|ID).

To make a decision about whether random slopes for Angle are needed, ask
yourself whether it varies within individuals. As each participant responded to both
camera angles, the answer to this question is ‘yes’. This means that you can fit vary-
ing slopes for the factor Angle. Moreover, as it is unreasonable to assume that all
participants are affected by the angle manipulation the same way, it makes sense
to fit varying slopes. Thus, this seems like a clear case that calls for including by-
participant varying slopes for the condition effect.

ugly_mdl <- glmer(UglyCat ~ Angle +
 (1 + Angle|ID), data = selfie,
 family = 'binomial')

Warning messages:
1: In checkConv(attr(opt, "derivs"), opt$par,
ctrl = control$checkConv, :
 �Model failed to converge with max|grad| = 0.112061
(tol = 0.001, component 1)

2: In checkConv(attr(opt, "derivs"), opt$par,

10	 �The actual study used a rating scale from 1 to 5. Here, I partitioned the response into a binary cat-
egorical variable for pedagogical purposes, so that a mixed logistic regression model can be fitted.

15034-2313q-3pass-r02.indd 268 10/3/2019 5:53:32 PM

Mixed Models 2  269

ctrl = control$checkConv, :
 Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?

The convergence warning indicates that the model cannot be trusted, and you
should not report results from this model in a publication. I used the all_fit()
function from the afex package to find an optimizer that works.

all_fit(ugly_mdl) # abbreviated output:

bobyqa. : [OK]
Nelder_Mead. : [OK]
optimx.nlminb : [ERROR]
optimx.L-BFGS-B : [ERROR]
nloptwrap.NLOPT_LN_NELDERMEAD : [OK]
nloptwrap.NLOPT_LN_BOBYQA : [OK]
nmkbw. : [OK]

The all_fit() function indicates that the ‘bobyqa’ optimizer is one of the opti-
mizers that leads to successful convergence. The following command refits the model
with this optimizer.

ugly_mdl <- glmer(UglyCat ~ Angle +
 (1 + Angle|ID), data = selfie,
 family = 'binomial',
 control =
 glmerControl(optimizer = 'bobyqa'))

Notice that the convergence warning has gone away. This model can be reported.
Let’s inspect the model.

summary(ugly_mdl)

Generalized linear mixed model fit by maximum likelihood
 (Laplace Approximation) [glmerMod]
 Family: binomial (logit)
Formula: UglyCat ~ Angle + (1 + Angle | ID)
 Data: selfie
Control: glmerControl(optimizer = "bobyqa")

 AIC BIC logLik deviance df.resid
1712.5 1739.2 -851.2 1702.5 1562

Scaled residuals:
 Min 1Q Median 3Q Max
-2.8757 -0.5489 0.1733 0.5502 3.0998

15034-2313q-3pass-r02.indd 269 10/3/2019 5:53:32 PM

270  Mixed Models 2
Random effects:
 Groups Name Variance Std.Dev. Corr
 ID (Intercept) 3.61 1.900
 AngleLevel 1.89 1.375 -0.38
Number of obs: 1567, groups: ID, 98

Fixed effects:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.9049 0.2199 4.115 3.88e-05 ***
AngleLevel -1.4834 0.2001 -7.414 1.22e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
 (Intr)
AngleLevel -0.486

In the case of mixed logistic regression and mixed Poisson regression, lme4 will
spit out a p -value that is based on a ‘Wald test’. This test is computationally more
efficient than a likelihood ratio test. Wald tests and the likelihood ratio test produce
very similar results for very large sample sizes; however, likelihood ratio tests are
generally the preferred option for various reasons (e.g., Hauck Jr. & Donner, 1977;
Agresti, 2002: 172); among others, the likelihood ratio tests have higher statistical
power (Williamson, Lin, Lyles, & Hightower, 2007; Gudicha, Schmittmann, & Ver-
munt, 2017). So, an alternative way of getting p-values for the Angle effect reported
above would be to construct a null model without this predictor (leaving the random
effects structure constant), and running a model comparison with the anova()
function (see Exercise 15.11.1).11

As this is a logistic regression model, the coefficients are log odds (Chap-
ter 12). To interpret the model, it helps to know what is the quantity that is being
predicted:

levels(selfie$UglyCat)

[1] "not_ugly" "ugly"

Since ‘n’ precedes ‘u’ in the alphabet, ‘not_ugly’ is made the reference level,
which means that the log odds are reported in terms of observing an ‘ugly’ response.
As the AngleLevel coefficient is negative (-1.4834), this means that level
angles led to a decrease in ugly responses. Chapter 12 discusses how to compute
probabilities.

An important take-home message of this example analysis is that a convergence warn-
ing should never be ignored (see Matuschek et al., 2017; Seedorff et al., 2019). You can-
not report the results of a non-converging model in a published study, as you won’t know
whether things have been estimated correctly or not.

11 � It should be noted that the p-values provided by the regression outputs in Chapters 12 and 13 for
logistic regression and Poisson regression are also based on Wald tests. In these cases, likelihood
ratio tests are also preferred.

15034-2313q-3pass-r02.indd 270 10/3/2019 5:53:32 PM

Mixed Models 2  271

15.9. � Shrinkage and Individual Differences
To round off this chapter, I want to pre-empt some potential misunderstandings my
discussion of random effects may have caused up to this point. So far, we have been
concerned with having the right random effects structure in order to make reliable infer-
ences for fixed effects predictors. When investigating the random effects structure, we
have focused on making sure that everything is estimated correctly. In my own experi-
ence, researchers in the language sciences often focus too much on the fixed effects
and, in doing so, they throw away a lot of useful information from their mixed models.

Figure 15.1 shows data from a repeated measures study with multiple responses per
participant. You can think of this as a frequency effect, where more frequent words
lead to shorter response durations, but participants differ in the extent to which they
are affected by word frequency.

Now, imagine that, rather than using a mixed model, you simply performed separate
regression analyses for each individual participant. The problem with this approach
is that none of the individual regression models knows about what the other models
estimate. For example, information in estimating participant A’s slope is not used in
estimating participant B’s slope; that is, the population-level perspective is completely
lost when separate models are fitted.

On the other hand, the mixed model takes the information from the entire dataset
into account. The varying intercepts and varying slopes are estimated together with
the population-level estimates. As a result of this, information about the population
is used in estimating individuals. This results in the individual estimates being drawn
towards the population-level estimate, a feature of mixed models that is also known
as ‘shrinkage’, visualized in Figure 15.1b. Notice how the intercepts are ‘shrunken’

Figure 15.1. � Visual demonstration of the effects of shrinkage; each dashed line indicates
participant-specific estimates, either based on (a) separate regression models
for every individual (no pooling) or (b) a mixed model with varying inter-
cepts and varying slopes; the bold line in (b) shows the population-level esti-
mate of the mixed model; notice how, for the mixed model, intercepts and
slopes are more similar to the population-level estimate

15034-2313q-3pass-r02.indd 271 10/3/2019 5:53:32 PM

272  Mixed Models 2

towards the intercept of the main population line. Similarly, the slopes are less extreme
than in Figure 15.1a, closer to the slope of the population line. When compared to sep-
arate regressions, the individual-level estimates of a mixed model are drawn towards
the average.

Gelman and Hill (2007: ch. 12) have a nice discussion of this. When a researcher
ignores dependent groups of data points from the same individual (not including any
random effects), they speak of ‘complete pooling’, where everything is just thrown
together without teasing apart the dependencies. This approach tends to underestimate
the variation present in the data. One may contrast this with a ‘no-pooling’ approach,
with a separate model for each individual. This tends to result in more extreme esti-
mates, often overestimating the variation across individuals. Mixed models can be
thought of as a nice sweet spot between these two approaches: they neither ignore the
individual level (as does ‘complete pooling’), nor do they ignore the population level
(as does ‘no pooling’).

This feature of mixed models makes these models ideal for studying individual
differences. Drager and Hay (2012) discuss the utility of mixed models for study-
ing individual differences in sociolinguistic behavior. Mirman, Dixon, and Magnuson
(2008) discuss individual differences and mixed models in the context of eye-tracking
research (see also Mirman et al., 2008; Mirman, 2014).

In my own research, I have found the random effects estimates to be often more
theoretically interesting than the fixed effects estimates. For example, in a perception
study on acoustic prominence (Baumann & Winter, 2018), we performed an explora-
tory analysis of individual differences based on the varying slopes estimates from a
prior mixed model analysis. This analysis revealed different listener subgroups hid-
den in the random effects structure. In another study (Idemaru, Winter, Brown, & Oh,
2019), we compared the influence of pitch and loudness on politeness judgments.
Investigating the random slopes revealed that all listeners interpreted the loudness
manipulation the same way, whereas listeners varied greatly for the pitch manipula-
tion. Thus, the random effects estimates from this study suggest that pitch is a less
reliable acoustic cue to politeness than loudness.

15.10. � Chapter Conclusions
This chapter has shown how to implement linear mixed effects models in R with
lme4. You started by simulating data with by-participant and by-item dependencies.
The conceptual pay-off of this exercise was that you could see how something as
simple as duration measurements from vowels are influenced by a whole range of dif-
ferent sources of variation. The mixed model fitted on the simulated data allowed esti-
mating the different variance components. You then created a bunch of messy models
by either dropping important random effects or by asking the model to estimate things
that aren’t in the data, which led to estimation problems even though there were no
warning messages. The take-home message of this section was that, no matter whether
you obtain a warning message or not, it is important to investigate the random effects
structure of your fitted model. You also learned how to derive p -values via likeli-
hood ratio tests. Finally, after a discussion of convergence issues, you analyzed a

15034-2313q-3pass-r02.indd 272 10/3/2019 5:53:32 PM

Mixed Models 2  273

dataset of the #uglyselfie phenomenon with mixed logistic regression and found that
changing the optimizer facilitated solving a convergence problem. The chapter con-
cluded with a brief discussion of shrinkage, and the utility of mixed effects models for
studying individual differences.

15.11. � Exercises

15.11.1.  Exercise 1: Perform Likelihood Ratio Test

Perform a likelihood ratio test for the Angle predictor of the ugly selfies model. Do
this first by specifying the null model yourself, using anova(). Then, do the same
thing again with afex.

15.11.2.  Exercise 2: Calculate Predicted Probabilities

For the #uglyselfie model, calculate the predicted probabilities for each camera angle
condition. You may have to refer back to Chapter 12 on logistic regression.

15034-2313q-3pass-r02.indd 273 10/3/2019 5:53:33 PM

16.1. � What You Have Learned So Far
This concluding chapter presents an overview of what you have learned in this book and
discusses some recommendations for best practice in statistical modeling.

Let us take stock of your achievements. After learning about R (Chapter 1) and the
tidyverse (Chapter 2), you have progressed to linear modeling. First, you modeled simple
univariate distributions with means (Chapter 3), then means conditioned on another vari-
able (Chapter 4). The following chapters delved more deeply into various aspects of the
linear model framework, such as transforming your variables (Chapter 5), adding multi-
ple predictors to your model (Chapter 6), as well as incorporating categorical predictors
(Chapter 7) and interactions (Chapter 8). Throughout all of these chapters, you have
almost exclusively looked at what your model predicts—this was a deliberate design
choice for this course, as I wanted you to focus on interpreting your model before you
engage with hypothesis testing, which followed in Chapters 9, 10, and 11. Up to Chap-
ter 12, all response variables analyzed throughout the book were continuous. To model
categorical data, Chapters 12 and 13 introduced the generalized linear model framework.
You have learned about logistic regression to model binary responses (Chapter 12), and
about Poisson regression to model count data (Chapter 13).

Finally, to model data with non-independent data points, I introduced you to mixed
models (Chapters 14 and 15). Varying intercept models allow the intercepts to vary
by a grouping factor (such as ‘participant’ or ‘item’). Varying slope models addition-
ally allow the slopes to vary by a grouping factor. The discussion highlighted that it’s
important not to default to any particular random effects structure, but to reason about
which varying slopes are needed for specific fixed effects predictors in your study.
Another take-home message was that you should never report the results of a non-
converging model.

There’s a clear trajectory through these chapters, with each chapter allowing you to
fit more complex models. Moreover, as you progressed through the book, you learned
how approaches in the earlier chapters were actually specific cases of larger frame-
works. Specifically, linear regression models are a specific case of the generalized linear
model (GLM) framework. And furthermore, GLMs are a specific case of the general-
ized linear mixed model framework—namely, they are models without random effects.

Throughout all of this, I emphasized that your models should be motivated by the-
ory. This is easier said than done, and this section talks about the issues that revolve
around choosing a good model.

16	 Outlook and Strategies for
Model Building

15034-2313q-3pass-r02.indd 274 10/3/2019 5:53:33 PM

Outlook and Strategies for Model Building  275

16.2. � Model Choice
A theme that runs through all of academic statistics is a tension between exploration
and confirmation. Exploratory statistics is hypothesis-generating: finding novel rela-
tionships in data. Confirmatory statistics is hypothesis-testing: assessing the validity
of pre-existing hypotheses with novel data. Both exploratory statistics and confirma-
tory statistics are necessary for scientific progress. Problems arise when confirmatory
statistics are based on a prior exploration of the same dataset.

However, even when you actively try to use regression in a confirmatory fashion,
the boundary between confirmation and exploration is not always that clear. Let’s
say you fit a model with a condition variable as one predictor, and gender as an addi-
tional control variable. Perhaps the gender variable turns out not to be significant,
and you might be inclined to drop the variable in an effort to simplify the model.
However, maybe after excluding gender from the model, the critical condition effect
ceases to be significant. In such a situation, it is very difficult not to fall prey to mak-
ing model choices that are guided by the significance of the condition variable. It is
very easy to convince yourself after the fact that the model that included gender was
actually the right one (for a discussion of these problems with linguistic examples,
see Roettger, 2018).

The problem is that each of the explored models was essentially a new test of the
same hypothesis. This amounts to a form of multiple testing and is thus bound to lead
to an increase in Type I errors. Performing exploration and confirmation on the same
dataset is dangerous and constitutes a form of data dredging (actively looking for
significant effects; Simmons et al., 2011). It also leads to HARKing—hypothesizing
after the results are known (Kerr, 1998). It’s very easy to come up with an explanation
for almost any phenomenon after the fact. Scientists are excellent at making sense of
patterns, but when doing confirmatory statistics, the patterns have to be predicted in
advance in order to count as a confirmation of a hypothesis.

The flexibility of the generalized linear mixed model framework is both a blessing
and a curse. Perhaps we should aim to eradicate choices altogether? Wouldn’t that be
more ‘objective’? In the following, I will discuss two choice-delimiting approaches.
I will ultimately argue against both of them.

16.3. � The Cookbook Approach
At several points in this book, I alluded to the difference between the ‘statistical test-
ing’ and ‘statistical modeling’ mindsets. Statistical testing is what is often taught in
introductory statistics classes, such as in undergraduate psychology courses. As part of
this tradition, you may encounter recommendations such as the following (hypotheti-
cal quote):

If you want to test whether two groups differ in a continuous measure, use a
t-test. If these observations are linked, use a paired (dependent samples) t-test,
otherwise use an unpaired (independent samples) t-test. If you have more than
two groups, use a one-way-ANOVA (analysis of variance). To add an additional
condition variable, use a two-way ANOVA. To add a continuous covariate, use
ANCOVA (analysis of co-variance).

15034-2313q-3pass-r02.indd 275 10/3/2019 5:53:33 PM

276  Outlook and Strategies for Model Building

This short paragraph is just a small subset of the possible tests one has to cover
when following this approach. For example, there are also tests for categorical data
(Chi-Square tests, binomial tests, etc.), as well as a plethora of non-parametric tests
(Wilcoxon tests, Kruskal-Wallis tests, etc.). You quickly end up with a bewildering
array of tests. Textbooks teaching this framework often assume what I call a ‘cook-
book approach’, which involves teaching the reader a series of statistical tests, perhaps
concluding with a flow chart that tells students how to choose the appropriate test for
a given dataset.

When following this cookbook approach, the student ends up thinking more about
what test to choose than about how to express their hypotheses using a statistical
model. Each test is highly constraining, not giving the user much flexibility in express-
ing their theories. In the end, the cookbook approach results in a highly compartmen-
talized view of statistics.

In addition, I find that the cookbook approach actively discourages thinking about
one’s theory. When people use statistical tests such as t-tests and Chi-Square tests,
they don’t stop to think about what of their domain knowledge should be incorporated
into their statistical models. Related to this, the whole perspective of making predic-
tions is completely lost when using these methods. Ultimately, these tests have one
clear goal, which is to generate a p-value.

In conclusion, the modeling framework has a host of advantages when compared to
the testing framework.1

16.4. � Stepwise Regression
By moving from statistical testing to statistical modeling, you gain access to a much
more flexible toolkit. So, keeping with the theme of desperately trying to limit your
choices, isn’t there a way of automatically guiding your decisions about which model
to fit? What about using an automated procedure that selects the best model for us?

Consider a situation with three predictors: A, B, and C. Ignoring interactions for the
time being, you end up with the following possible models.

y ~ 1

y ~ 1 + A

y ~ 1 + B

y ~ 1 + C

y ~ 1 + A + B

y ~ 1 + A + C

yy ~ 1 + B + C

y ~ 1 + A + B + C

1	 That said, it may be useful for you to know how some of the tests that are commonly reported in the
literature (such as t-tests, ANOVAs etc.) correspond to certain linear models discussed throughout
this book. For this, see Appendix A.

15034-2313q-3pass-r02.indd 276 10/3/2019 5:53:33 PM

Outlook and Strategies for Model Building  277

A technique called ‘stepwise regression’ is one of many automatic procedures that
can be used to select one model from the set of all possible models. Stepwise regres-
sion either performs ‘forward selection’ (starting with an empty model and iteratively
adding predictors, keeping them in the model only if they are significant), ‘backward
selection’ (starting with a full model and iteratively deleting those predictors that are
not significant), or a combination of both. Stepwise regression is still quite common in
linguistics, especially sociolinguistics.

Stepwise regression has the appearance of objectivity, but this approach has a host of
problems that are well described in the statistical literature (Steyerberg, Eijkemans, &
Habbema, 1999; Whittingham, Stephens, Bradbury, & Freckleton, 2006). One problem is
that the final model resulting from a stepwise model selection procedure is often reported
as the outcome of a confirmatory statistical analysis (with p -values and so on), as if it was
predicted in advance. The procedure, however, performed a lot of exploration within the
dataset to find the best model. As a result of this, Type I error rates for the final model are up
through the roof, which has been verified by simulations (Mundry & Nunn, 2008; see also
Steyerberg et al., 1999). This issue is related to the problem of multiple testing discussed in
Chapter 10. Stepwise regression has the tendency to overfit, homing in on the idiosyncrasies
of a particular dataset at hand. As a result, you have absolutely no guarantee that the final
model generalizes well to novel data.2 Even more problematic for our concerns, when per-
forming stepwise regression, you essentially relegate all thinking to a machine, potentially
ending up with a model that corresponds in no way to an established theory and that may
move you far away from what you set out to investigate.

Thus, stepwise regression is fraught with a host of statistical and conceptual issues,
which is why it is almost universally recommended against by statisticians. Simply
put, linguists should not use stepwise regression. The only “problem" that stepwise
regression solves is a lack of willingness to think deeply about one’s models.

16.5. � A Plea for Subjective and Theory-Driven
Statistical Modeling

In this chapter, I have given you two examples of approaches that limit choices—
either via highly specialized significance tests or via automatic model selection pro-
cedures such as stepwise regression. Instead, you should accept the fact that statistical
modeling is subjective. McElreath (2016: 95) offers a nice quote for this:

Making choices tends to make novices nervous. There’s an illusion sometimes
that default procedures are more objective than procedures that require user
choice … If that’s true, then all “objective" means is that everyone does the
same thing. It carries no guarantees of realism or accuracy.

2	 There are also some more technical problems with stepwise regression. For example, forward and
backward selection lead to different models. This is a conceptually thorny issue, as it means that
different implementations result in different models. In addition, it’s not entirely clear how to best
perform stepwise regression in a mixed model context: should varying slopes be entered for each of
the possible models? If varying slopes are added for all fixed effects, then this quickly leads to mas-
sively overspecified models that are bound to have convergence issues. If, on the other hand, varying
slopes are not included, then estimates may be anti-conservative (Schielzeth & Forstmeier, 2009).

15034-2313q-3pass-r02.indd 277 10/3/2019 5:53:33 PM

DolanA
Highlight
curly quotes please

DolanA
Highlight
curly quotes please

278  Outlook and Strategies for Model Building

Statistical modeling requires deep thinking about one’s theory and about the data.
Ideally, each predictor you enter into a model has a strong reason for being included.
Let’s consider, for example, the predictor ‘gender’. If you analyze sociolinguistic
data, perhaps this variable should be included, as there is a lot of literature to suggest
that women and men differ on a number of sociolinguistically relevant variables. For
example, women have repeatedly been shown to be early adopters of sound changes.
However, if you analyze psycholinguistic data, you may not need to include gender
into the model, and you shouldn’t do so if you have no specific hypothesis about gen-
der differences for the phenomenon at hand. This is not to say that gender should never
be a predictor in a model of psycholinguistic data. Quite the contrary: it should defi-
nitely be included in a model if there are specific theories that predict gender effects.

Consider an example: when we submitted the data that you analyzed in Chapter 6
(iconicity as a function of sensory experience, imageability, frequency, and systema-
ticity), one of the reviewers asked us: “Why weren’t any interactions between the
variables fitted?" In our reviewer response letter, we provided a simple answer to this
question: because we didn’t predict any interactions. We had clear expectations for the
individual effects of each predictor, and this is why they were included in the model
in the first place. However, in the absence of strong theories about how these variables
should interact, we deemed it was best not to try our luck. Thus, we decidedly stuck
with the confirmatory fashion of our analysis, in spite of the reviewer’s suggestion,
which essentially just invited us to explore the data.

You can pre-empt problems at the modeling stage by specifying the model as much
as possible in advance of your analysis, which is best done even before conducting
the study. After all, if you are conducting a study, you are generally collecting data
with a specific hypothesis in mind, which means that it should be possible to formu-
late your model formula before seeing the data. In fact, these days, more and more
researchers pre-register their studies (such as via the Open Science Framework; see
Nosek & Lakens, 2014), which includes publicly pre-specifying what analysis one
should conduct.3 This helps to be principled about making modeling decisions.

That said, it has to be recognized that experienced researchers find it easier than
novices to make modeling decisions in advance of collecting the data. Novices will
find it hard to foresee all the eventualities they may run into when performing an
analysis. One’s practice in statistical modeling is very much affected by experience—
having seen lots of different datasets, having constructed lots of different residual
plots, having encountered lots of convergence issues, and so on. As you advance in
your career as a data analyst, you will find it progressively easier to make more prin-
cipled decisions.

In doing statistical modeling, you should take a clear position on whether you are in
‘confirmatory mode’ or ‘exploratory mode’. There is nothing wrong with exploratory sta-
tistics—on the contrary, exploration is extremely important. If it were not for exploration,
many of the most important findings in science (including the language sciences) would
have been missed. However, it is problematic when exploratory statistics are written up in
the guise of confirmatory statistics. In such cases, it is best to clearly state that the analyses

3	 Pre-registration is slowly but surely becoming institutionalized as more and more scientific journals
adopt this practice. See http://cos.io/rr for updates and a growing list of journals (accessed Octo-
ber 23, 2018).

15034-2313q-3pass-r02.indd 278 10/3/2019 5:53:33 PM

DolanA
Highlight
curly quotes please

Outlook and Strategies for Model Building  279

are exploratory, and that they therefore need to be confirmed with new data. In fact, part of
the replication crisis that was discussed in Chapter 2 results from the fact that the research
community seems to value confirmation more than exploration, which often requires
reframing exploratory results as confirmatory in order to get them published. It’s good to
take a clear stance here and defend exploration when it is appropriate (Roettger, Winter, &
Baayen, 2019).

Let me tell you about another example from my own research that I think nicely dem-
onstrates the tension between exploration and confirmation. In Brown et al. (2014), we
wanted to test whether Korean listeners can perceive politeness distinctions based on
acoustic cues alone. We used mixed logistic regression in a confirmatory fashion to test
this. However, we had no clear hypothesis about which specific acoustic cue would mat-
ter the most in determining politeness judgments. In fact, our own research (Winter &
Grawunder, 2012) has shown that honorific distinctions correlate with a host of acoustic
markers in production. Any one of them could have influenced politeness judgments in
perception. In the absence of strong theoretically motivated predictions, we performed
an exploratory analysis to investigate which acoustic cues were used by Korean listen-
ers. In the paper, this analysis was clearly marked as exploratory, and we refrained from
reporting any p-values. The patterns we found in this analysis need to be confirmed with
new data. Moreover, our confirmatory mixed model analysis was fixed; we didn’t change
things as a result of the exploratory analysis. Thus, in this study, we followed McArdle’s
(2011: 335) mantra, “confirm first, explore second".

There’s a thin line between exploration and confirmation. Both are incredibly
important. However, when you’re not clear on where you stand, and you start mix-
ing exploration and confirmation on the same dataset, you enter the ‘danger zone’ of
HARKing and data dredging.

16.6. � Reproducible Research
The array of different options in statistical modeling potentially results in analyses
where an outsider does not know which models have been explored prior to the model
that is ultimately reported in a paper. This is the dark side of subjectivity. Reproducible
research practices alleviate some of these concerns. Chapter 2 detailed many different
ways you can make your analysis more open and accessible to others, which is a key
ingredient to making it more reproducible. Ideally, all your data and code are publicly
available, and ideally the code runs immediately on someone else’s machine to repro-
duce exactly those numerical values that are reported in a paper.

There is a big push towards reproducible research in many different fields (Gentle-
man & Lang, 2007; Mesirov, 2010; Peng, 2011; Munafò et al., 2017), and linguistics
is currently catching on (see Berez-Kroeker et al., 2018; Roettger, 2018; Roettger
et al., 2019). Linguistics can only benefit from adopting these trends: not only does
reproducibility allow other researchers to check the validity of published results, it
also facilitates the exchange of methods and data. It’s a way for the field to grow.

In one of his statistics workshops, John McArdle used the slogan “be honest, not
pure". Of course, withdrawing from a desire to be ‘pure’ in one’s statistical analyses
should not be an invitation to ‘sin’ (e.g., fishing for effects, data dredging). However,
this slogan reminds us that our models can never be perfect; they will never be able
to satisfy all researchers. All we can do is to be honest about how our modeling deci-
sions were made; we need to lay all our cards on the table. Because it is inevitable that

15034-2313q-3pass-r02.indd 279 10/3/2019 5:53:33 PM

DolanA
Highlight
curly double quote marks please

DolanA
Highlight
curly quotes please

280  Outlook and Strategies for Model Building

different researchers will come to different conclusions even when given the same
dataset (cf. Silberzahn et al., 2018), ‘purity’ is not an attainable goal. However, hon-
esty is.

There simply is no ‘best model’ for a dataset that will satisfy the demands of all
researchers. On a more personal note: looking back at some of my past models, I don’t
necessarily agree with all the decisions that I made. However, as everything is ‘out
there’ for others to see (on GitHub and OSF), anybody who disagrees with my mod-
eling decisions can form their own opinion. I hope that this book has encouraged you
to be part of the growing movement towards reproducible research practices in the
language sciences.

16.7. � Closing Words
This book has covered a whole range of topics, but obviously there are many tech-
niques not covered. However, regression (and its extensions) is one of the most useful
tools to get you started. You will find that many of the new approaches you will hear
about actually relate to regression in some form or another, although there are also
many methods that are not based on this framework. Importantly, you should not see
this book as the end point of your statistical journey. Instead, it should be a spring-
board for learning more. I hope to have prepared you for continuing your journey
through the world of statistics.

15034-2313q-3pass-r02.indd 280 10/3/2019 5:53:33 PM

Agresti, A. (2002). Categorical data analysis. Hoboken, NJ: John Wiley.
Auguie, B. (2017). gridExtra: Miscellaneous functions for “grid" graphics. R package ver-

sion 2.3.
Austin, P.C., Mamdani, M.M., Juurlink, D.N., & Hux, J.E. (2006). Testing multiple statisti-

cal hypotheses resulted in spurious associations: A study of astrological signs and health.
Journal of Clinical Epidemiology, 59(9), 964–969.

Baayen, R.H. (2008). Analyzing linguistic data. Cambridge, UK: Cambridge University
Press.

Baayen, R.H. (2013). languageR: Data sets and functions with “Analyzing linguistic data:
A practical introduction to statistics". R package version 1.4.1.

Baayen, R.H., Davidson, D.J., & Bates, D.M. (2008). Mixed-effects modeling with
crossed random effects for subjects and items. Journal of Memory and Language, 59(4),
390–412.

Baayen, R.H., & Milin, P. (2010). Analyzing reaction times. International Journal of Psy-
chological Research, 3(2), 12–28.

Balota, D.A., Yap, M.J., Hutchison, K.A., Cortese, M.J., Kessler, B., Loftis, B., . . . Trei-
man, R. (2007). The English Lexicon Project. Behavior Research Methods, 39, 445–459.

Barr, D.J., Levy, R., Scheepers, C., & Tily, J.J. (2013). Random-effects structure for con-
firmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68,
255–278.

Bartoń, K. (2017). MuMIn: Multi-model inference. R package version 1.40.0. Available
online at https://cran.r-project.org/package=MuMIn

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects mod-
els using lme4. Journal of Statistical Software, 67(1), 1–48.

Baumann, S., & Winter, B. (2018). What makes a word prominent? Predicting untrained
listeners’ prominence judgments. Journal of Phonetics, 70, 20–38.

Bednarek, M.A. (2008). Semantic preference and semantic prosody re-examined. Corpus
Linguistics and Linguistic Theory, 4, 119–139.

Bennett, C.M., Baird, A.A., Miller, M.B., & Wolford, G.L. (2011). Neural correlates of
interspecies perspective taking in the post-mortem Atlantic salmon: an argument for
proper multiple comparisons correction. Journal of Serendipitous and Unexpected
Results, 1, 1–5.

Bentz, C., & Winter, B. (2013). Languages with more second language learners tend to lose
nominal case. Language Dynamics & Change, 3(1), 1–27.

Berez-Kroeker, A.L., Gawne, L., Kung, S.S., Kelly, B.F., Heston, T., Holton, G., … Wood-
bury, A.C. (2018). Reproducible research in linguistics: A position statement on data
citation and attribution in our field. Linguistics, 56(1), 1–18.

References

15034-2313q-3pass-r02.indd 281 10/3/2019 5:53:33 PM

DolanA
Highlight
curly quotes please

DolanA
Highlight
curly quotes please

282  References

Boot, I., & Pecher, D. (2010). Similarity is closeness: Metaphorical mapping in a concep-
tual task. Quarterly Journal of Experimental Psychology, 63, 942–954.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Bresnan, J., Cueni, A., Nikitina, T., & Baayen, R.H. (2007). Predicting the dative alterna-

tion. In G. Bouma, I. Kraemer, & J. Zwarts (Eds.), Cognitive foundations of interpreta-
tion (pp. 69–94). Amsterdam: Royal Netherlands Academy of Science.

Bresnan, J., & Hay, J. (2008). Gradient grammar: An effect of animacy on the syntax of
give in New Zealand and American English. Lingua, 118(2), 245–259.

Brown, L., Winter, B., Idemaru, K., & Grawunder, S. (2014). Phonetics and politeness:
Perceiving Korean honorific and non-honorific speech through phonetic cues. Journal
of Pragmatics, 66, 45–60.

Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation
of current word frequency norms and the introduction of a new and improved word fre-
quency measure for American English. Behavior Research Methods, 41, 977–990.

Brysbaert, M., New, B., & Keuleers, E. (2012). Adding part-of-speech information to the
SUBTLEX-US word frequencies. Behavior Research Methods, 44(4), 991–997.

Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects mod-
els: A tutorial. Journal of Cognition, 1(1), 9.

Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan.
Journal of Statistical Software, 80(1), 1–28.

Burns, P. (2011). The R Inferno. Available online: https://www.burns-stat.com/pages/
Tutor/R_inferno.pdf

Buzsáki, G., & Mizuseki, K. (2014). The log-dynamic brain: How skewed distributions
affect network operations. Nature Reviews Neuroscience, 15(4), 264–278.

Casasanto, D. (2008). Similarity and proximity: When does close in space mean close in
mind? Memory & Cognition, 36, 1047–1056.

Christiansen, M.H., & Chater, N. (2016). Creating language: Integrating evolution, acqui-
sition, and processing. Cambridge, MA: MIT Press.

Cleveland, W.S. (1984). Graphical methods for data presentation: Full scale breaks, dot
charts, and multibased logging. American Statistician, 38(4), 270–280.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hills-
dale, NJ: Erlbaum Press.

Connell, L., & Lynott, D. (2012). Strength of perceptual experience predicts word process-
ing performance better than concreteness or imageability. Cognition, 125(3), 452–465.

Cortese, M.J., & Fugett, A. (2004). Imageability ratings for 3,000 monosyllabic words.
Behavior Research Methods, Instruments, & Computers, 36, 384–387.

Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals,
and meta-analysis. New York: Routledge.

Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25(1),
7–29.

Davies, M. (2008) The Corpus of Contemporary American English: 450 million words,
1990-present. Available online at http://corpus.byu.edu/coca/

de Bruin, A., Bak, T.H., & Della Sala, S. (2015). Examining the effects of active versus
inactive bilingualism on executive control in a carefully matched non-immigrant sam-
ple. Journal of Memory and Language, 85, 15–26.

Dehaene, S. (2003). The neural basis of the Weber-Fechner law: A logarithmic mental
number line. Trends in Cognitive Sciences, 7(4), 145–147.

Dienes, Z. (2008). Understanding psychology as a science: An introduction to scientific
and statistical inference. New York: Palgrave Macmillan.

15034-2313q-3pass-r02.indd 282 10/3/2019 5:53:33 PM

References  283

Dingemanse, M., Blasi, D.E., Lupyan, G., Christiansen, M.H., & Monaghan, P. (2015).
Arbitrariness, iconicity, and systematicity in language. Trends in Cognitive Sciences,
19(10), 603–615.

Drager, K., & Hay, J. (2012). Exploiting random intercepts: Two case studies in sociopho-
netics. Language Variation and Change, 24(1), 59–78.

Eager, C., & Roy, J. (2017). Mixed effects models are sometimes terrible. Available online
at https://arxiv.org/abs/1701.04858

Faraway, J. (2005). Linear models with R. Boca Raton, FL: Chapman & Hall/CRC Press.
Faraway, J.J. (2006). Extending the linear model with R: Generalized linear, mixed effects

and nonparametric regression models. Boca Raton, FL: Chapman & Hall/CRC Press.
Fox, J., & Weisberg, S. (2011). An R Companion to Applied Regression (2nd ed.). Thou-

sand Oaks CA: Sage.
Freeberg, T.M., & Lucas, J.R. (2009). Pseudoreplication is (still) a problem. Journal of

Comparative Psychology, 123(4), 450–451.
García-Berthou, E., & Hurlbert, S.H. (1999). Pseudoreplication in hermit crab shell selec-

tion experiments: Comment to Wilber. Bulletin of Marine Sciences, 65(3), 893–895.
Gardner, M.J., & Altman, D.G. (1986). Confidence intervals rather than P values: Estima-

tion rather than hypothesis testing. British Medical Journal, 292, 746–750.
Gasser, M. (2004). The origins of arbitrariness in language. In K. Forbus, D. Gentner, &

T. Regier (Eds.), Proceedings of the 26th annual conference of the Cognitive Science
Society (pp. 434–439). Mahwah, NJ: Erlbaum.

Gelman, A., & Carlin, J. (2014). Beyond power calculations: assessing type S (sign) and
type M (magnitude) errors. Perspectives on Psychological Science, 9(6), 641–651.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical
models. Cambridge, UK: Cambridge University Press.

Gelman, A., & Loken, E. (2014). Ethics and statistics: The AAA tranche of subprime sci-
ence. Chance, 27(1), 51–56.

Gentleman, R., & Lang, D. (2007). Statistical analyses and reproducible research. Journal
of Computational and Graphical Statistics, 16, 1–23.

Gigerenzer, G. (2004). Mindless statistics. Journal of Socio-Economics, 33(5), 587–606.
Gillespie, C., & Lovelace, R. (2017). Efficient R programming. Sebastopol, CA: O’Reilly.
Goodman, S.N. (1999). Toward evidence-based medical statistics. 1: The P value fallacy.

Annals of Internal Medicine, 130(12), 995–1004.
Green, P., & MacLeod, C.J. (2016). SIMR: An R package for power analysis of generalized

linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493–498.
Gries, S.Th. (2015). The most under-used statistical method in corpus linguistics: Multi-

level (and mixed-effects) models. Corpora, 10(1), 95–125.
Gudicha, D.W., Schmittmann, V.D., & Vermunt, J.K. (2017). Statistical power of likeli-

hood ratio and Wald tests in latent class models with covariates. Behavior Research
Methods, 49(5), 1824–1837.

Hassemer, J. (2016). Towards a theory of gesture form analysis. Imaginary forms as part of
gesture conceptualisation, with empirical support from motion-capture data. PhD thesis,
RWTH Aachen University.

Hassemer, J., & Winter, B. (2016). Producing and perceiving gestures conveying height or
shape. Gesture, 15(3), 404–424.

Hassemer, J., & Winter, B. (2018). Decoding gestural iconicity. Cognitive Science, 42(8),
3034–3049.

Hauck Jr, W.W., & Donner, A. (1977). Wald’s test as applied to hypotheses in logit analy-
sis. Journal of the American Statistical Association, 72, 851–853.

15034-2313q-3pass-r02.indd 283 10/3/2019 5:53:33 PM

284  References

Houtkoop, B.L., Chambers, C., Macleod, M., Bishop, D.V., Nichols, T.E., & Wagenmak-
ers, E.J. (2018). Data sharing in psychology: A survey on barriers and preconditions.
Advances in Methods and Practices in Psychological Science, 1(1), 70–85.

Hubbard, R., & Lindsay, R.M. (2008). Why P values are not a useful measure of evidence
in statistical significance testing. Theory & Psychology, 18(1), 69–88.

Hunston, S. (2007). Semantic prosody revisited. International Journal of Corpus Linguis-
tics, 12(2), 249–268.

Hurlbert, S.H. (1984). Pseudoreplication and the design of ecological field experiments.
Ecological Monographs, 54(2), 187–211.

Idemaru, K., Winter, B., Brown, L., & Oh, G.E. (2019). Loudness trumps pitch in polite-
ness judgments: Evidence from Korean deferential speech. Language and Speech. DOI:
10.1177/0023830918824344

Ioannidis, J.P. (2005). Why most published research findings are false. PLoS Medicine,
2(8), e124.

Jackman, S. (2015). pscl: Classes and methods for R developed in the Political Science
Computational Laboratory, Stanford University. Department of Political Science, Stan-
ford University. Stanford, California. R package version 1.4.9. Available online at http://
pscl.stanford.edu/

Jaeger, T.F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not)
and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446.

Jaeger, T.F., Graff, P., Croft, W., & Pontillo, D. (2011). Mixed effect models for genetic and
areal dependencies in linguistic typology. Linguistic Typology, 15(2), 281–319.

Jescheniak, J.D., & Levelt, W.J. (1994). Word frequency effects in speech production:
Retrieval of syntactic information and of phonological form. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 20, 824–843.

Juhasz, B.J., & Yap, M.J. (2013). Sensory experience ratings for over 5,000 mono-and
disyllabic words. Behavior Research Methods, 45, 160–168.

Jurafsky, D. (2014). The language of food. New York: W.W. Norton.
Kello, C.T., Anderson, G.G., Holden, J.G., & Van Orden, G.C. (2008). The pervasiveness

of 1/f scaling in speech reflects the metastable basis of cognition. Cognitive Science,
32(7), 1217–1231.

Kello, C.T., Brown, G.D., Ferrer-i-Cancho, R., Holden, J.G., Linkenkaer-Hansen, K., Rho-
des, T., & Van Orden, G.C. (2010). Scaling laws in cognitive sciences. Trends in Cogni-
tive Sciences, 14(5), 223–232.

Kerr, N.L. (1998). HARKing: Hypothesizing after the results are known. Personality and
Social Psychology Review, 2(3), 196–217.

Kirby, J., & Sonderegger, M. (2018). Mixed-effects design analysis for experimental pho-
netics. Journal of Phonetics, 70, 70–85.

Kline, R.B. (2004). Beyond significance testing: Reforming data analysis methods in
behavioral research. Washington, DC: American Psychological Association.

Krantz, D.H. (1999). The null hypothesis testing controversy in psychology. Journal of the
American Statistical Association, 94(448), 1372–1381.

Krifka, M. (2010). A note on the asymmetry in the hedonic implicatures of olfactory and
gustatory terms. In S. Fuchs, P. Hoole, C. Mooshammer & M. Zygis (Eds.), Between the
Regular and the Particular in Speech and Language (pp. 235–245). Frankfurt am Main:
Peter Lang.

Kroodsma, D. (1989). Suggested experimental designs for song playbacks. Animal Behav-
iour, 37, 600–609.

15034-2313q-3pass-r02.indd 284 10/3/2019 5:53:33 PM

References  285

Kroodsma, D.E. (1990). Using appropriate experimental designs for intended hypotheses
in “song" playbacks, with examples for testing effects of song repertoire sizes. Animal
Behaviour, 40, 1138–1150.

Lazic, S.E. (2010). The problem of pseudoreplication in neuroscientific studies: Is it affect-
ing your analysis? BMC Neuroscience, 11, 1–17.

Lenth, R. (2018). emmeans: Estimated marginal means, aka least-squares means. R pack-
age version 1.2.4.

Levinson, S.C., & Majid, A. (2014). Differential ineffability and the senses. Mind & Lan-
guage, 29, 407–427.

Levy, R. (2018). Using R formulae to test for main effects in the presence of higher-order
interactions. arXiV, 1405.2094v2. Available online at https://arxiv.org/pdf/1405.2094.
pdf

Lievers, F.S., & Winter, B. (2018). Sensory language across lexical categories. Lingua,
204, 45–61.

Littlemore, J., Pérez Sobrino, P., Houghton, D., Shi, J., & Winter, B. (2018). What makes
a good metaphor? A cross-cultural study of computer-generated metaphor appreciation.
Metaphor & Symbol, 33, 101–122.

Lombardi, C.M., & Hurlbert, S.H. (1996). Sunfish cognition and pseudoreplication. Ani-
mal Behaviour, 52, 419–422.

Lynott, D., & Connell, L. (2009). Modality exclusivity norms for 423 object properties.
Behavior Research Methods, 41, 558–564.

Lynott, D., & Connell, L. (2013). Modality exclusivity norms for 400 nouns: The relation-
ship between perceptual experience and surface word form. Behavior Research Meth-
ods, 45(2), 516–526.

Machlis, L., Dodd, P.W.D., & Fentress, J.C. (1985). The pooling fallacy: Problems arising
when individuals contribute more than one observation to the data set. Zeitschrift fürTi-
erpsychologie, 683), 201–214.

Majid, A., & Burenhult, N. (2014). Odors are expressible in language, as long as you speak
the right language. Cognition, 130, 266–270.

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error
and power in linear mixed models. Journal of Memory and Language, 94, 305–315.

McArdle, J.J. (2011). Some ethical issues in factor analysis. In A.T. Panter & S.K. Sterba
(Eds.), Handbook of ethics in quantitative methodology (pp. 313–339). New York:
Routledge.

McElreath, R. (2016). Statistical rethinking: A Bayesian course with examples in R and
Stan. Boca Raton, FL: CRC Press.

Mesirov, J. P. (2010). Computer science: Accessible reproducible research. Science, 327,
5964.

Milinski, M. (1997). How to avoid seven deadly sins in the study of behavior. Advances in
the Study of Behavior, 26, 159–180.

Milton Bache, S., & Wickham, H. (2014). magrittr: A forward-pipe operator for R.R pack-
age version 1.5. Available online at https://CRAN.R-project.org/package=magrittr

Mirman, D. (2014). Growth curve analysis and visualization using R. Boca Raton, FL:
CRC Press.

Mirman, D., Dixon, J.A., & Magnuson, J.S. (2008). Statistical and computational mod-
els of the visual world paradigm: Growth curves and individual differences. Journal of
Memory and Language, 59(4), 475–494.

15034-2313q-3pass-r02.indd 285 10/3/2019 5:53:33 PM

DolanA
Highlight
curly quotes please

286  References

Monaghan, P., Shillcock, R.C., Christiansen, M.H., & Kirby, S. (2014). How arbitrary is
English? Philosophical Transactions of the Royal Society of London: Series B, Biologi-
cal Sciences, 369, 20130299.

Montgomery, D.C., & Peck, E.A. (1992). Introduction to linear regression analysis. New
York: Wiley.

Morey, R.D., Hoekstra, R., Rouder, J.N., Lee, M.D., & Wagenmakers, E.J. (2016). The
fallacy of placing confidence in confidence intervals. Psychonomic Bulletin & Review,
23(1), 103–123.

Morrissey, M.B., & Ruxton, G.D. (2018). Multiple regression is not multiple regressions:
The meaning of multiple regression and the non-problem of collinearity. Philosophy,
Theory, and Practice in Biology, 10(3).

Müller, K., & Wickham, H. (2018). tibble: Simple data frames. R package version 1.4.2.
Available online at https://CRAN.R-project.org/package=tibble

Munafò, M.R., Nosek, B.A., Bishop, D.V., Button, K.S., Chambers, C.D., du Sert, N.P., …
Ioannidis, J.P. (2017). A manifesto for reproducible science. Nature Human Behaviour,
1, 0021.

Mundry, R., & Nunn, C.L. (2008). Stepwise model fitting and statistical inference: Turning
noise into signal pollution. American Naturalist, 173(1), 119–123.

Nakagawa, S. (2004). A farewell to Bonferroni: The problems of low statistical power and
publication bias. Behavioral Ecology, 15(6), 1044–1045.

Nakagawa, S., & Cuthill, I.C. (2007). Effect size, confidence interval and statistical signifi-
cance: A practical guide for biologists. Biological Review, 82, 591–605.

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2
from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4,
133–142.

Nettle, D. (1999). Linguistic Diversity. Oxford: Oxford University Press.
Nicenboim, B., Roettger, T.B., & Vasishth, S. (2018). Using meta-analysis for evidence

synthesis: The case of incomplete neutralization in German. Journal of Phonetics, 70,
39–55.

Nicenboim, B., & Vasishth, S. (2016). Statistical methods for linguistic research: Founda-
tional ideas—Part II. Language and Linguistics Compass, 10(11), 591–613.

Nickerson, R.S. (2000). Null hypothesis significance testing: A review of an old and con-
tinuing controversy. Psychological Methods, 5(2), 241–301.

Nieuwland, M.S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N.,
… Mézière, D. (2018). Large-scale replication study reveals a limit on probabilistic
prediction in language comprehension. eLife, 7.

Nosek, B.A., & Lakens, D. (2014). Registered reports. Social Psychology, 45, 137–141.
O’brien, R.M. (2007). A caution regarding rules of thumb for variance inflation factors.

Quality & Quantity, 41(5), 673–690.
O’Hara, R.B., & Kotze, D. J. (2010). Do not log-transform count data. Methods in Ecology

and Evolution, 1(2), 118–122.
Open Science Collaboration. (2015). Estimating the reproducibility of psychological sci-

ence. Science, 349(6251), aac4716.
Osborne, J. (2005). Notes on the use of data transformations. Practical Assessment,

Research and Evaluation, 9(1), 42–50.
Paap, K.R., & Greenberg, Z.I. (2013). There is no coherent evidence for a bilingual advan-

tage in executive processing. Cognitive Psychology, 66(2), 232–258.
Papesh, M.H. (2015). Just out of reach: On the reliability of the action-sentence compat-

ibility effect. Journal of Experimental Psychology: General, 144(6), e116–e141.

15034-2313q-3pass-r02.indd 286 10/3/2019 5:53:34 PM

References  287

Peng, R.D. (2011). Reproducible research in computational science. Science, 334,
1226–1227.

Perezgonzalez, J.D. (2015). Fisher, Neyman-Pearson or NHST? A tutorial for teaching data
testing. Frontiers in Psychology, 6, 223.

Perry, L.K., Perlman, M., & Lupyan, G. (2015). Iconicity in English and Spanish and its
relation to lexical category and age of acquisition. PloS One, 10(9), e0137147.

Perry, L.K., Perlman, M., Winter, B., Massaro, D.W., & Lupyan, G. (2017). Iconicity in the
speech of children and adults. Developmental Science, e12572.

Pinheiro, J.C., & Bates, D.M. (2000). Mixed-effects models in S and SPLUS. New York: Springer.
Piwowar, H.A., & Vision, T.J. (2013). Data reuse and the open data citation advantage.

PeerJ, 1, e175.
Postman, K., & Conger, B. (1954). Verbal habits and the visual recognition of words. Sci-

ence, 119, 671–673.
Quinn, G.P., & Keough, M.J. (2002). Experimental design and data analysis for biologists.

Cambridge, UK: Cambridge University Press.
Reinboud, W. (2004). Linear models can’t keep up with sport gender gap. Nature,

432(7014), 147.
Reinhart, C.M., & Rogoff, K.S. (2010). Growth in a time of debt. American Economic

Review, 100(2), 573–578.
Rice, K. (2004). Sprint research runs into a credibility gap. Nature, 432(7014), 147.
Roberts, S., & Winters, J. (2013). Linguistic diversity and traffic accidents: Lessons from

statistical studies of cultural traits. PloS One, 8(8), e70902.
Robinson, D. (2017). broom: Convert statistical analysis objects into tidy data frames. R

package version 0.4.3. Available online at https://CRAN.R-project.org/package=broom
Roettger, T.B. (2018). Researcher degrees of freedom in phonetic research. Journal of the

Association for Laboratory Phonology, 10(1).
Roettger, T.B., Winter, B., & Baayen, R.H. (2019). Emergent data analysis in phonetic sci-

ences: Towards pluralism and reproducibility. Journal of Phonetics, 73, 1–7.
Roettger, T.B., Winter, B., Grawunder, S., Kirby, J., & Grice, M. (2014). Assessing incom-

plete neutralization of final devoicing in German. Journal of Phonetics, 43, 11–25.
Rothman, K.J. (1990). No adjustments are needed for multiple comparisons. Epidemiol-

ogy, 1(1), 43–46.
Rouby, C., & Bensafi, M. (2002). Is there a hedonic dimension to odors? In C. Rouby,

B. Schaal, D. Dubois, R. Gervais, & A. Holley (Eds.), Olfaction, taste, and cognition
(pp. 140–159). Cambridge, UK: Cambridge University Press.

Schiel, F., Heinrich, C., & Barfüsser, S. (2012). Alcohol language corpus: The first pub-
lic corpus of alcoholized German speech. Language Resources and Evaluation, 46(3),
503–521.

Schielzeth, H. (2010). Simple means to improve the interpretability of regression coef-
ficients. Methods in Ecology and Evolution, 1(2), 103–113.

Schielzeth, H., & Forstmeier, W. (2009). Conclusions beyond support: Overconfident esti-
mates in mixed models. Behavioral Ecology, 20, 416–420.

Seedorff, M., Oleson, J., & McMurray, B. (2019). Maybe maximal: Good enough mixed
models optimize power while controlling Type I error. PsyArXiv pre-print, DOI:
10.31234/osf.io/xmhfr Available online at https://psyarxiv.com/xmhfr/

Shaoul, C., & Westbury, C. (2010). Exploring lexical co-occurrence space using HiDEx.
Behavior Research Methods, 42(2), 393–413.

Sidhu, D.M., & Pexman, P.M. (2018). Lonely sensational icons: Semantic neighbourhood den-
sity, sensory experience and iconicity. Language, Cognition and Neuroscience, 33(1), 25–31.

15034-2313q-3pass-r02.indd 287 10/3/2019 5:53:34 PM

288  References

Silberzahn, R., Uhlmann, E. L., Martin, D. P., Anselmi, P., Aust, F., Awtrey, E., … Carlsson, R.
(2018). Many analysts, one data set: Making transparent how variations in analytic choices
affect results. Advances in Methods and Practices in Psychological Science, 1(3), 337–356.

Simmons, J.P., Nelson, L.D., & Simonsohn, U. (2011). False-positive psychology: Undis-
closed flexibility in data collection and analysis allows presenting anything as signifi-
cant. Psychological Science, 22(11), 1359–1366.

Singmann, H., Bolker, B., Westfall, J., & Aust, F. (2016). afex: Analysis of factorial experi-
ments. R package version 0.16–1. Available online at https://CRAN.R-project.org/
package=afex

Smith, N.J., & Levy, R. (2013). The effect of word predictability on reading time is loga-
rithmic. Cognition, 128(3), 302–319.

Snefjella, B., & Kuperman, V. (2016). It’s all in the delivery: Effects of context valence,
arousal, and concreteness on visual word processing. Cognition, 156, 135–146.

Solomon, R.L., & Postman, L. (1952). Frequency of usage as a determinant of recognition
thresholds for words. Journal of Experimental Psychology, 43, 195–201.

Sóskuthy, M. (2017). Generalised additive mixed models for dynamic analysis in lin-
guistics: A practical introduction. arXiv preprint arXiv:1703.05339. Available online at
http://eprints.whiterose.ac.uk/113858/2/1703_05339v1.pdf

Stack, C.M.H., James, A.N., & Watson, D.G. (2018). A failure to replicate rapid syntactic
adaptation in comprehension. Memory & Cognition, 46(6), 864–877.

Sterne, J.A., & Smith, G.D. (2001). Sifting the evidence—What’s wrong with significance
tests? Physical Therapy, 81(8), 1464–1469.

Stevens, S.S. (1957). On the psychophysical law. Psychological Review, 64(3), 153–181.
Steyerberg, E.W., Eijkemans, M.J., & Habbema, J.D.F. (1999). Stepwise selection in small

data sets: A simulation study of bias in logistic regression analysis. Journal of Clinical
Epidemiology, 52(10), 935–942.

Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Ration-
ale, application, and characteristics of classification and regression trees, bagging, and
random forests. Psychological Methods, 14(4), 323–348.

Tagliamonte, S.A., & Baayen, H. (2012). Models, forests, and trees of York English: Was/
were variation as a case study for statistical practice. Language Variation and Change,
24(2), 135–178.

Tatem, A.J., Guerra, C.A., Atkinson, P.M., & Hay, S.I. (2004). Athletics: Momentous sprint
at the 2156 Olympics? Nature, 431(7008), 525.

Thompson, B. (2004). The “significance" crisis in psychology and education. Journal of
Socio-Economics, 33(5), 607–613.

Tomaschek, F., Hendrix, P., & Baayen, R.H. (2018). Strategies for addressing collinearity
in multivariate linguistic data. Journal of Phonetics, 71, 249–267.

Torchiano, M. (2016). effsize: Efficient effect size computation. R package version 0.6.4.
Vasishth, S., & Gelman, A. (2017). The statistical significance filter leads to overconfident

expectations of replicability. arXiv preprint arXiv:1702.00556. Available online at www.
stat.columbia.edu/~gelman/research/unpublished/VasishthGelmanCogSci2017.pdf

Vasishth, S., & Nicenboim, B. (2016). Statistical methods for linguistic research: Founda-
tional ideas—Part I. Language and Linguistics Compass, 10(8), 349–369.

Vasishth, S., Nicenboim, B., Beckman, M.E., Li, F., Kong, E.-J. (2018). Bayesian data anal-
ysis in the phonetic sciences: A tutorial introduction. Journal of Phonetics, 71, 147–161.

Venables, W.N., & Ripley, B.D. (2002). Modern applied statistics with S. (4th ed.). New
York: Springer.

Vinson, D.W., & Dale, R. (2014). Valence weakly constrains the information density of
messages. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.) Proceedings of

15034-2313q-3pass-r02.indd 288 10/3/2019 5:53:34 PM

DolanA
Highlight
curly quotes please

References  289

the 36th annual meeting of the Cognitive Science Society (pp. 1682–1687). Austin, TX:
Cognitive Science Society.

Warriner, A.B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and
dominance for 13,915 English lemmas. Behavior Research Methods, 45, 1191–1207.

Whittingham, M.J., Stephens, P.A., Bradbury, R.B., & Freckleton, R.P. (2006). Why do
we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology,
75(5), 1182–1189.

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer-
Verlag, 2016.

Wickham, H. (2017). tidyverse: Easily install and load the “tidyverse". R package version
1.2.1. Available online at https://CRAN.R-project.org/package=tidyverse

Wickham, H., François, R., Henry, L., & Müller, K. (2018). dplyr: A grammar of data
manipulation. R package version 0.7.5. Available online at https://CRAN.R-project.org/
package=dplyr

Wickham, H., Hester, J., & François, R. (2017). readr: Read rectangular text data. R pack-
age version 1.1.1. Available online at https://CRAN.R-project.org/package=readr

Wickham, H., & Grolemund, G (2017). R for data science. Sebastopol, CA: O’Reilly.
Wieling, M. (2018). Analyzing dynamic phonetic data using generalized additive mixed

modeling: A tutorial focusing on articulatory differences between L1 and L2 speakers of
English. Journal of Phonetics, 70, 86–116.

Williamson, J.M., Lin, H., Lyles, R.H., & Hightower, A.W. (2007). Power calculations for
ZIP and ZINB models. Journal of Data Science, 5, 519–534.

Winter, B. (2011). Pseudoreplication in phonetic research. Proceedings of the International
Congress of Phonetic Science (pp. 2137–2140). Hong Kong, August 17–21, 2011.

Winter, B. (2016). Taste and smell words form an affectively loaded part of the English
lexicon. Language, Cognition and Neuroscience, 31(8), 975–988.

Winter, B., & Bergen, B. (2012). Language comprehenders represent object distance both
visually and auditorily. Language and Cognition, 4(1), 1–16.

Winter, B., & Grawunder, S. (2012). The phonetic profile of Korean formality. Journal of
Phonetics, 40(6), 808–815.

Winter, B., & Matlock, T. (2013). Making judgments based on similarity and proximity.
Metaphor & Symbol, 28, 219–232.

Winter, B., Perlman, M., & Majid, A. (2018). Vision dominates in perceptual language:
English sensory vocabulary is optimized for usage. Cognition, 179, 213–220.

Winter, B., Perlman, M., Perry, L.K., & Lupyan, G. (2017). Which words are most iconic?
Iconicity in English sensory words. Interaction Studies, 18(3), 433–454.

Winter, B., & Wieling, M. (2016). How to analyze linguistic change using mixed models,
Growth Curve Analysis and Generalized Additive Modeling. Journal of Language Evo-
lution, 1, 7–18.

Xie, Y. (2015). Dynamic documents with R and knitr. Boca Raton, FL: Chapman and Hall/
CRC Press.

Xie, Y. (2018). knitr: A general-purpose package for dynamic report generation in R. R
package version 1.20. Available online at https://cran.r-project.org/ packages=knitr

Zipf, G.K. (1949). Human behavior and the principle of least effort: An introduction to
human ecology. Reading, MA: Addison Wesley.

Zuur, A.F., Ieno, E.N., & Elphick, C.S. (2010). A protocol for data exploration to avoid
common statistical problems. Methods in Ecology and Evolution, 1(1), 3–14.

Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., & Smith, G.M. (2009). Mixed effects
models and extensions in ecology with R. New York: Springer.

15034-2313q-3pass-r02.indd 289 10/3/2019 5:53:34 PM

DolanA
Highlight
curly quotes please

This appendix serves two purposes. First, if you already know basic significance tests
such as the t-test it will help you to understand how these tests map onto the cor-
responding linear models. Second, if you do not know these tests, then this appendix
serves as a brief introduction.

I recommend reading this appendix only if you have already completed Chapters 1
to 7, as well as Chapter 9 (significance testing). In addition, I recommend having a
look at Chapter 16 first.

Load the tidyverse and broom packages before beginning the chapter:

library(tidyverse)

library(broom)

A1.  t-Tests
First, let us focus on what is perhaps the most commonly discussed significance test,
the t-test. For the t-test, the response has to be continuous. For example, you may be
interested in whether there is a difference in voice pitch between women and men (see
Chapter 9), or whether there is a difference in the emotional valence between taste and
smell words (see Chapter 7).

Let us start by creating some data in R. For now, let’s work with the example of
voice pitch, which is the perceptual correlate of fundamental frequency (how quickly
your vocal folds vibrate). Voice pitch is measured on the continuous scale of Hertz.
The following code creates two vectors, M and F. Each vector includes a set of 50
random numbers that are drawn from the normal distribution with the rnorm() func-
tion. The means of the respective groups are specified to be 200 Hz for women and
100 Hz for men. The standard deviation for both groups is specified to be 10 Hz.

F <- rnorm(50, mean = 200, sd = 10) # female values

M <- rnorm(50, mean = 100, sd = 10) # male values

Next, let’s combine these two vectors into one vector, using the concatenate func-
tion c(). In the resulting vector, all male values are listed after all female values.

Appendix A
Correspondences Between
Significance Tests and Linear Models

15034-2313q-3pass-r02.indd 290 10/3/2019 5:53:34 PM

Significance Tests Versus Linear Models  291

resp <- c(F, M) # concatenate both

Let’s create gender identifiers. For this, concatenate the two character labels ‘F’ and
‘M’ together with the c() function. Then, take the resulting vector and instruct the
repeat function rep() to repeat each one of the concatenated labels 50 times.

gender <- rep(c('F', 'M'), each = 50) # create gender ids

Next, put both into a tibble called df.

df <- tibble(gender, resp)

Let’s quickly check how the tibble looks like (remember that your numbers will be
different due to random sampling).

df

A tibble: 100 x 2
 gender resp
 <chr> <dbl>
 1 F 214.
 2 F 194.
 3 F 204.
 4 F 206.
 5 F 204.
 6 F 199.
 7 F 215.
 8 F 199.
 9 F 220.
10 F 199.
... with 90 more rows

Now that you have a tibble with the data in place, you can perform a t-test to
establish whether the two groups are significantly different from each other. This cor-
responds to the following logic (see Chapter 9): assuming that female and male voice
pitches are equal (= null hypothesis of 0 difference), how probable is the actually
observed difference or any difference more extreme than that? This is how you can
perform the test in R (explanations follow).

t.test(resp ~ gender, data = df,
 paired = FALSE, var.equal = TRUE)

  Two Sample t-test

data: resp by gender
t = 47.222, df = 98, p-value < 2.2e-16

15034-2313q-3pass-r02.indd 291 10/3/2019 5:53:34 PM

292  Appendix A
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
94.49116 102.78137
sample estimates:
mean in group F mean in group M
 199.6433 101.0070

You set the argument paired = FALSE because you have two inde-
pendent groups of data points, one set of female pitch values and one set of male
pitch values, what is called an ‘unpaired t-test’ or ‘independent samples t-test’.
The argument var.equal = TRUE specifies that you assume the variances in both
groups to be equal (think of the homoscedasticity assumption discussed in Chapter 4).
You can safely do this in this case because you specified the standard deviations to be
equal when the data was generated.

The p-value is very small. So, operating at an alpha level of α = 0.05, this dataset can
be seen as sufficiently incompatible with the null hypothesis. In other words, this result is
‘significant’. The linear model corresponding to an unpaired t-test simply looks like this:

xmdl <- lm(resp ~ gender, data = df)

tidy(xmdl)

 term estimate std.error statistic p.value
1 (Intercept) 199.64328 1.476987 135.16927 3.439977e-113
2 genderM -98.63627 2.088775 -47.22206 3.184096e-69

As discussed in Chapter 7, categorical factors, such as (in this case) gender, are
treatment-coded by default. The coefficient for gender then represents the difference
between two groups, which is tested against 0. Barring some rounding differences
due to differences in display defaults, the statistical results of lm() and t.test()
are equivalent. In particular, notice that the test statistic is indicated to be t = 47.22 in
both cases. The fact that it is negative in the case of the linear model is irrelevant; this
merely depends on which group is subtracted first.

Next in the line of basic significance tests is the ‘one-sample t-test’. This is a test
where just one set of numbers (one sample) is tested against some pre-established
number. For example, you have already been exposed to the iconicity ratings collected
by Perry et al. (2015, 2017) and Winter et al. (2017). In these studies, we used a cen-
tered rating scale for iconicity that ranged from –5 (‘the word sounds like the opposite
of what it means’) to +5 (‘the word sounds like what it means’). In these studies, we
reported a result where the mean of the overall distribution of iconicity ratings is
tested against 0. The one-sample t-test can be used to achieve this, and it can also be
used to test a set of numbers against any other value from the literature.

Just to gain some experience with this test, you can test whether the voice pitches
just generated are reliably different from 0. Not a particularly interesting result, since
fundamental frequencies have to be positive anyway.

15034-2313q-3pass-r02.indd 292 10/3/2019 5:53:34 PM

DolanA
Highlight
Please reduce the spacing here. It would be good if the whole of 'independent' could fit on the first line.

Significance Tests Versus Linear Models  293

One-sample t-test:

t.test(resp, data = df, mu = 0)

	 One Sample t-test

data: resp
t = 29.683, df = 99, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
140.2763 160.3740
sample estimates:
mean of x
150.3251

The corresponding linear model is an intercept-only model:

One-sample t-test with lm():

xmdl <- lm(resp ~ 1, data = df)

tidy(xmdl)

 term estimate std.error statistic p.value
1 (Intercept) 150.3251 5.064405 29.68269 4.39096e-51

As discussed in Chapter 4, in the absence of any conditioning variables, a linear
model simply predicts the mean of a dataset. The intercept is then tested against 0,
which is often not an interesting comparison to make.1 Comparing the output of lm()
and t.test() shows that the reported statistics are the same, barring some rounding
differences.

The last t-test to discuss is the ‘paired t-test’, otherwise known as ‘dependent sam-
ples t-test’. This test is used when observations are linked, such as when each par-
ticipant is exposed to two conditions. For example, if you wanted to know whether a
group of participants improved after receiving some form of training, each participant
would have a pre-test and a post-test score associated with them. It is in situations like
this that a paired t-test is appropriate.

To create a dataset amenable to a paired t-test analysis, let’s change the example.
In the following pipeline, the gender column is first renamed to cond for ‘condition’.
Then, ifelse() is used to change the ‘M’ labels to ‘post’ (post-test), and the ‘F’
labels to ‘pre’ (pre-test). In the final step, the response is multiplied by 4 to make the
example look like response durations. Let’s say you’re interested in testing whether
participants speed up or slow down on some task after having received training.

1	 If you wanted to test against another value (e.g., a particular value taken from the literature), the
t.test() function allows specifying the mu argument.

15034-2313q-3pass-r02.indd 293 10/3/2019 5:53:34 PM

294  Appendix A

df <- rename(df, cond = gender) %>%
 mutate(cond = ifelse(cond == 'M', 'post', 'pre'),
 resp = 4 * resp)
df

A tibble: 100 x 2
 cond resp
 <chr> <dbl>
 1 pre 855.
 2 pre 777.
 3 pre 815.
 4 pre 825.
 5 pre 816.
 6 pre 796.
 7 pre 860.
 8 pre 796.
 9 pre 881.
10 pre 797.
... with 90 more rows

Now everything is in place for running a paired t-test:

t.test(resp ~ cond, df, paired = TRUE)

	 Paired t-test

data: resp by cond
t = -42.52, df = 49, p-value < 2.2e-16
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
-413.1921 -375.8980
sample estimates:
mean of the differences

-394.5451

Thus, there is a statistically significant difference between the pre-test and the post-
test condition. How do you conduct a paired t-test in the linear model framework? For
this it helps to understand that a paired t-test is actually just a one-sample t-test that tests
the differences between two groups against 0. So, you can compute difference scores
(post minus pre) and fit an intercept-only model. The following code achieves this:

posts <- filter(df, cond == 'post')$resp

pres <- filter(df, cond == 'pre')$resp

diffs <- posts - pres

15034-2313q-3pass-r02.indd 294 10/3/2019 5:53:34 PM

Significance Tests Versus Linear Models  295

xmdl <- lm(diffs ~ 1)

tidy(xmdl)

 term estimate std.error statistic p.value
1 (Intercept) -394.5451 9.279103 -42.51974 2.423957e-40

As discussed in Chapter 4, an intercept-only model predicts the mean, so this model
predicts the mean differences. The significance test of the intercept is then a test of the
mean difference against 0, which is exactly the same calculation that a paired t-test
performs.

Finally, let me emphasize that the t-test is fairly limited in its domain of application
because it assumes independence. For an unpaired t-test, this means that each data
point has to come from a different participant. For a paired t-test, this means that each
participant can maximally contribute one pair of data points. This is why the linear
model framework is advantageous, as it allows extending to mixed models to deal
with cases where t-tests are too constrained.

A2.  Tests for Categorical Data
The t-test is for continuous data (one group of numbers against an established mean,
or two groups). For categorical data, there are various tests available, of which we
will cover only the binomial test and the chi-square test (‘χ2-test’). Again, let’s start by
generating some random data. Remember that you will get slightly different results
from what is reported in this book.

To generate 50 binomially distributed random numbers, use rbinom(). Let’s set
the probability argument prob to 0.8 and the size argument to 1. Thus, altogether,
the command below generates 50 random numbers for which there is an 80% chance
of observing an event (1), compared to a 20% chance of not observing it (0).

x <- rbinom(50, size = 1, prob = 0.8)

Let’s check what’s contained in the object x (remember: your numbers will be
different).

x

 [1] 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0
[24] 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0
[47] 0 1 0 1

xtab <- table(x)

xtab

 0 1
12 38

15034-2313q-3pass-r02.indd 295 10/3/2019 5:53:35 PM

296  Appendix A

One significance test you might want to perform here is for testing whether the
probability of observing an event is significantly different from p = 0.5. This is what’s
called a ‘binomial test’.

binom.test(xtab, p = 0.5)

	 Exact binomial test
data: xtab
number of successes = 18, number of trials =
50, p-value = 0.06491
alternative hypothesis: true probability of success is not
equal to 0.5
95 percent confidence interval:
0.2291571 0.5080686
sample estimates:
probability of success

0.36

The p-value is above 0.05 in this particular case, which means that, given this data,
there is not enough evidence to refute the null hypothesis of equal proportions. This,
of course, only applies to this specific dataset. For a different random dataset, you may
obtain a significant result.

Binomial tests are extremely limited, but nonetheless useful in many circumstances.
For example, in the case of the height versus shape gestures (see Chapter 12; Hassemer &
Winter, 2016), you could use a binomial test to show that there are significantly more
shape responses in the dataset than height responses. In Chapter 12, it was mentioned that
we observed a total of 184 shape responses, and 125 height responses, in our gesture per-
ception study. Plugging these two numbers into a binomial test shows that these counts are
incompatible with the null hypothesis that the two response options have equal probability.

binom.test(c(125, 184))

	 Exact binomial test

data: c(125, 184)
number of successes = 125, number of trials
= 309, p-value = 0.0009383
alternative hypothesis: true probability of success is not
equal to 0.5
95 percent confidence interval:
0.3493380 0.4615722
sample estimates:
probability of success

0.4045307

Another test that often comes up in the context of categorical data is the chi-square
test. Let’s start with the chi-square test of equal proportions. As was mentioned in
previous chapters, Lynott and Connell (2009) performed a sensory modality rating
study for 423 English adjectives. There are 205 sight words, 70 touch words, 68 sound

15034-2313q-3pass-r02.indd 296 10/3/2019 5:53:35 PM

Significance Tests Versus Linear Models  297

words, 54 taste words, and 26 smell words in their dataset. Do these counts differ from
chance expectations? For this, you can conduct a chi-square test of equal proportions.

mods <- c(205, 70, 68, 54, 26)

chisq.test(mods)

	 Chi-squared test for given probabilities
data: mods
X-squared = 228.78, df = 4, p-value <
2.2e-16

Thus, assuming that there is an equal number of words for all of the senses, the actu-
ally observed counts are fairly unexpected. You can look at the counts expected under
the null hypothesis of equal proportions as follows:

chisq.test(mods)$expected

[1] 84.6 84.6 84.6 84.6 84.6

… which is the same as:

sum(mods) / length(mods)

[1] 84.6

In other words, you expect a count of 84.6 for each cell when assuming that the null
hypothesis of equal proportions is true. The chi-square test tells you that the observed
counts significantly deviate from these expected counts.

A more complex chi-square test can be exemplified with an unpublished study
that I conducted with my former PhD supervisor Teenie Matlock. In this study,
we wanted to know whether verbs of perception implicitly encode distance. For
example, the sentence You are looking at the door seems to imply a distance farther
away from the door than You are inspecting the door. We asked participants to draw
the door described in each one of these sentences. Then, research assistants coded
for whether the door included visual detail or not (such as a doorknob, a frame, a
window, etc.). This was treated as a binary variable. We predicted that participants
would draw more detail if the perception verb implies a closer distance to the door,
since details can be spotted only when one is close to an object. So we want to
know whether the binary response variable ‘detail’ (‘yes’ versus ‘no’) is affected by
the binary predictor variable ‘distance’ (‘near’ versus ‘far’). Let’s load in the data:

xdist <- read_csv('winter_matlock_unpublished_distance.
csv')

xdist

A tibble: 398 x 3
 subject Details Distance

15034-2313q-3pass-r02.indd 297 10/3/2019 5:53:35 PM

298  Appendix A
 <chr> <chr> <chr>
 1 S1 Yes near
 2 S2 Yes near
 3 S3 Yes far
 4 S4 Yes far
 5 S5 Yes near
 6 S6 Yes far
 7 S7 Yes near
 8 S8 No far
 9 S9 No far
10 S10 Yes far
... with 388 more rows

Let’s tabulate the contents of the Distance column against the contents of the
Details column. In the following command, the with() function is used so that
it isn’t necessary to type the name of the tibble again when indexing column. The
with() function takes two arguments: first, a tibble; second, a function. The contents
of the tibble are then made available to the function.

xtab <- with(xdist, table(Distance, Details))

xtab

 Details
Distance No Yes
 far 89 117
 near 59 133

To compute a chi-square test, wrap the chisq.test() function around the table.

chisq.test(xtab)

	 Pearson's Chi-squared test with Yates' continuity
correction
data: xtab
X-squared = 6.0975, df = 1, p-value = 0.0135

So, a chi-square test performed on this 2 x 2 contingency table is ‘significant’ (p <
0.05). What does ‘significance’ mean in the context of a two-dimensional table? To
understand what’s going on, you can look at the expected counts:

chisq.test(xtab)$expected

Details
Distance	 No	 Yes
 far	 76.60302	 129.397
 near	 71.39698	 120.603

These are the counts that are expected under the null hypothesis that the columns
are independent from the rows. In this particular case, the chi-square test assesses

15034-2313q-3pass-r02.indd 298 10/3/2019 5:53:35 PM

Significance Tests Versus Linear Models  299

whether differences in Distance are associated with differences in Details. The
particular chi-square test executed here bears the name ‘chi-square test of independ-
ence’. Don’t confuse this with the independence assumption discussed in Chapter 14.
In fact, the chi-square test assumes independence—that is, each participant can at
most contribute one data point. In other words, there cannot be multiple data points
from the same individual within a given cell.

The expected counts are derived by taking the row totals and multiplying them by
the column totals.2 This can be paraphrased as follows: our expectation for a given cell
is based on what row/column combination you are in. You expect more data in a cell
if it is also in a row that has a lot of data, and the same applies to columns. Cells that
deviate strongly from the expected counts contribute to a significant chi-square value.

To compute all of this with the corresponding linear model, you need logistic
regression. For this, you first need to make the response into a factor (see Chapter 12).

xdist <- mutate(xdist, Details = factor(Details))

dist_mdl <- glm(Details ~ Distance,
	 data = xdist, family = 'binomial')

tidy(dist_mdl)

 term estimate std.error statistic p.value
1 (Intercept) 0.2735376 0.1406519 1.944784 0.05180102
2 Distancenear 0.5392741 0.2103590 2.563590 0.01035959

The coefficient table shows a significant effect for the distance factor, with a positive
log odd coefficient for the ‘near’ condition. These log odds indicate that when a sentence
was ‘near’, there was a higher probability of observing a drawing with detail (‘yes’).

Table A1 lists the correspondences discussed up to this point.

A3.  Other Tests
The set of tests shown in Table A1 is just a small subset of the most basic tests that
can be re-expressed in linear model format. Another very frequent type of significance
testing procedure is ANOVA, analysis of variance. However, the linear model can
perform the same job as ANOVA.3 If you are familiar with ANOVA, Table A2 maps
some common ANOVAs onto the corresponding linear models.

2	 Advanced R tip: here’s how to calculate this by hand using the cross-multiplication function
outer():
outer(rowSums(xtab), colSums(xtab)) / sum(xtab)
 No         Yes
far 76.60302 129.397
near 71.39698 120.603

3	 Depending on what the default settings of particular functions are, the exact numerical output may
differ (e.g., depending on what types of sums of squares are computed).

15034-2313q-3pass-r02.indd 299 10/3/2019 5:53:35 PM

300  Appendix A

Table A2.  Correspondences between ANOVAs and linear models

ANOVA Linear model Description

aov(y ~ c3) lm(y ~ c3) One-way ANOVA with
three-level factor

aov(y ~ c2 * c2) lm(y ~ c2 * c2) 2 x 2 ANOVA (two-way
ANOVA)

aov(y ~ c2 * c3) lm(y ~ c2 * c3) 2 x 3 ANOVA (and so on)
aov(y ~ c2 *
covariate)

lm(y ~ c2 *
covariate)

ANCOVA (analysis
of covariance) with
covariate (continuous
predictor) and many
other types of similar
models

Instead of repeated measures ANOVA, you can use mixed models. The linear model
framework allows much more complex random effects structures, thus giving the user
more flexibility in expressing their theories.

Table A1.  Correspondences between some significance tests and linear models

Significance test Linear model Description

t.test(y ~ pred,
paired = FALSE)

lm(y ~ pred) An unpaired t-test
corresponds to a linear
model with a binary
categorical predictor

t.test(y, mu = 0) lm(y ~ 1) One-sample t-test
corresponds to an
intercept-only model

t.test(y ~ pred,
paired = TRUE)

lm(diffs ~ 1) A paired t-test corresponds
to an intercept-only model
fitted on differences

chisq.test(xtab) glm(y ~ x, family
= binomial)

A chi-square test can be
emulated with a logistic
regression model

15034-2313q-3pass-r02.indd 300 10/3/2019 5:53:35 PM

How to continue learning after this book? This appendix contains a (very personal)
list of reading recommendations. I have always found it helpful to mix very easy reads
(‘bedtime reads’) with intermediate and more advanced reads. If you get stuck in one
book (or bored by it), swap to another text.

B1.  Book Recommendations
A good beginner’s guide to R and applied statistical methods with linguistic applica-
tions is Natalia Levshina’s excellent How to do Linguistics with R: Data Exploration
and Statistical Analysis. Not being focused on linear models, this book won’t give you
a very detailed breakdown of the linear model framework, but instead you get intro-
duced to many useful exploratory techniques that are not covered here.

One of the best introductions to data visualization with ggplot2 is Kieran Healy’s
Data Visualization: A Practical Introduction. It’s gorgeous.

An easy-to-intermediate text that is quite useful with respect to mixed models is
Dan Mirman’s Growth Curve Analysis and Visualization Using R. Although the later
chapters are focused on how to fit polynomials to time-varying data, the earlier chap-
ters provide a very clear introduction to mixed models.

Intermediate to advanced textbooks that go into more detail on many of the issues
covered in this book are Andrew Gelman and Jennifer Hill’s monumental Data Analy-
sis Using Regression and Multilevel/Hierarchical Models, and the great Mixed Effects
Models and Extensions in Ecology with R, by Zuur and colleagues. Don’t shy away
from the fact that the Zuur textbook is targeted at ecologists: I have often found that
statistics textbooks from ecology and biology are very good reads and the mental
mapping to linguistic applications is actually not all that difficult. Gelman and Hill’s
textbook is more focused on sociology applications. Both books go into more detail
about mixed models and generalized linear models.

There is perhaps no better statistics textbook, ever, than Richard McElreath’s Sta-
tistical Rethinking. It is a thoroughly Bayesian journey through the world of statistics,
filled with metaphors, jokes, and lucid explanations. If you are new to Bayesian mod-
eling, Statistical Rethinking introduces you to the framework from first principles.
However, the book requires a bit more math.

I highly recommend reading some books that are exclusively focused on R to get
a firm grasp of the programming language. Moreover, learning more R will greatly

Appendix B
Reading Recommendations

15034-2313q-3pass-r02.indd 301 10/3/2019 5:53:35 PM

302  Appendix B

improve the range of datasets you can deal with, and it will save you lots of time in the
long run as you become better at automatizing tasks. Perhaps one of the best starting
points is Hadley Wickham and Garrett Grolemund’s R for Data Science, which is a
thoroughly “tidy" introduction to R, focusing a lot on how to wrangle with your data.
On top of that, I found Norman Matloff’s The Art of R Programming to be a delightful
read on base R programming. A good follow-up to Matloff’s book is Hadley Wick-
ham’s excellent Advanced R. Finally, I can highly recommend Patrick Burns’ very
witty R Inferno as an R programming bedtime read (if there ever was such a thing).
This one is for the more poetically inclined readers.

If you are a corpus linguist or computational linguist, consider reading Julia Silge
and David Robinson’s Text Mining with R: A Tidy Approach.

If you want to learn more about data-mining techniques, I highly recommend the
phenomenal An Introduction to Statistical Learning: with Applications in R by James,
Witten, Hastie and Tibshirani.

Moving on to books that do not deal with R implementations, I can highly recom-
mend Zoltan Dienes’ Understanding Psychology as a Science: An Introduction to Sci-
entific and Statistical Inference. This book should be required reading for all students
in any field, as it gives crystal-clear accounts of some of the most fundamental issues
in science and statistics. If you want to mix this up with some really light bedtime
reads, have a look at Larry Gonick and Woollcott Smith’s The Cartoon Guide to Sta-
tistics and Grady Klein and Alan Dabney’s The Cartoon Introduction to Statistics.
These are good for repeating the basics.

B2.  Article Recommendations
For a basic introduction to statistics, statistical inference, as well as a discussion of
some common pitfalls in linguistic applications of statistics, see Vasishth and Nicen-
boim (2016). The follow-up paper Nicenboim and Vasishth (2016) focuses more on
Bayesian modeling, and I highly recommend reading it after or along with the new
Vasishth et al. (2018), which also gives a nice introduction to the Bayesian modeling
package brms (Bürkner, 2017) with linguistic examples. As this book has already
introduced you to the lme4 package, converting to brms will be quite easy once you
understand the relevant Bayesian concepts.

I highly recommend reading Schielzeth (2010) for a discussion of the usefulness
of centering in the presence of interactions. I also recommend Zuur et al. (2010) for a
great overview of regression assumptions and collinearity. Both of these are ecology/
biology papers, but they are very accessibly written. Jaeger (2008) is a good discus-
sion of logistic regression with linguistic examples.

If you have complex nonlinearities in your data (pitch trajectories, articulatory tra-
jectories, etc.), you may want to look into generalized additive models. I collaborated
with Martijn Wieling on a tutorial on this (Winter & Wieling, 2016). There also is
Sóskuthy (2018) and Wieling (2018), which are good follow-up tutorials that go into
more detail.

In addition, I recommend the reader to have a look at two special issues focused on
data analysis that have been published in linguistic journals: first, the 2008 Emergent
Data Analysis special issue in the Journal of Memory and Language; and, second, the

15034-2313q-3pass-r02.indd 302 10/3/2019 5:53:35 PM

DolanA
Highlight
curly quotes please

Reading Recommendations  303

2018 special issue called Emergent Data Analysis in Phonetic Sciences in the Jour-
nal of Phonetics (don’t worry—you don’t have to be a phonetician to understand the
papers presented in there).

B3.  Staying Up-to-Date
The best way to stay ‘up-to-date’ with R and statistics is to engage with the vast
online community of data scientists. People in this community are incredibly willing
to share their knowledge with others. There’s a plethora of free tutorials online. I can
also highly recommend following data scientists and quantitative linguists on Twitter.

The most important thing is that you continue learning. I hope that this book is a
stepping stone for you.

15034-2313q-3pass-r02.indd 303 10/3/2019 5:53:35 PM

68%–95% rule 55 – 56, 62 – 63, 66 – 67, 239

absolute value function 4
addition 2
adjusted R-squared see R-squared
aesthetic mappings see ggplot2
alpha level 168, 173, 175 – 177
alternative hypothesis see null hypothesis
ANOVA 300
arguments 3 – 4
assignment 5 – 6
assumptions 73 – 75, 109 – 112, 129 – 130,

232 – 234; homoskedasticity 73 – 75,
109 – 112, 129 – 130; independence
232 – 234; normality 73 – 75, 109 – 112,
129 – 130, 198 – 200

back–transforming logarithms 91 – 94;
log-transformed count data 222 – 225;
log-transformed response times 97 – 98

Bernoulli distribution see distributions
binary data see logistic regression
binomial distribution see distributions
binomial test 295 – 296
Bonferroni 176 – 177, 186 – 187
boxplots 42 – 43, 59 – 60, 121
bracketing 3

centering and interactions 134 – 138;
see also linear transformations

character vectors see vector
Chi-square test 296 – 299
citing packages 20 – 21
co-variance 160
coefficients 71 – 72; significance tests of

180 – 183; standardized coefficients
87 – 90, 105 – 109

Cohen’s d 159 – 162
collinearity 112 – 115
colors 20, 121

columns 13 – 15
comma separated files 16 – 17
comments 5
confidence intervals 162 – 165, 194 – 197;

of regression coefficients 180 – 183; for
logistic regression models 215 – 216

confirmatory statistics 275, 278 – 279
contrast coding 117 – 132; changing the

reference level 124 – 125; Helmert
coding 130 – 131; reference level
118 – 119, 136, 141 – 142, 184 – 185,
190, 209, 270; sum coding 125 – 127,
144 – 145; treatment coding 117 – 119,
122 – 125, 127 – 129

convergence issues 265 – 267
correlation 88 – 90, 100 – 102, 113 – 114,

160, 162, 170; correlation is not
causation 70; correlations between
predictors see collinearity

count data see Poisson regression
cubic regression see polynomial regression
curves see polynomial regression

data frames 13 – 16
dative alternation 207 – 209
density graphs 67, 121
dependent variable see response variable
diagnostics 110 – 112
distributions 53 – 54; Bernoulli distribution

200 – 201; binomial distribution
200 – 201; normal distribution 54 – 56,
199 – 200; Poisson distribution 218 – 219;
skewed distributions 90 – 91; uniform
distribution 53 – 54

division 3
dplyr package 30 – 34
dummy coding see treatment coding

emotional valence 64 – 67, 88, 117 – 130,
188 – 194

Index

15034-2313q-3pass-r02.indd 304 10/3/2019 5:53:35 PM

Index  305

equal variance assumption see assumptions
error term 74
explanatory variable see predictor variable
exploratory statistics 275, 278 – 279
exponentiation 3, 91 – 94, 97 – 98,

150 – 155, 220
exposure variables 225 – 227

F–test 185 – 186
factor levels see levels
factor vectors see vectors
false negative see Type I and Type II errors
false positive see Type I and Type II errors
family–wise error rate 175 – 177
file management 16 – 17, 45 – 46
fitted values 72 – 74, 79
fixed effects 234 – 237
folder structure see file management
for loops 111 – 112
functions 3 – 4

Gaussian distribution see normal
distribution

generalized linear models 198 – 231;
overview of 229 – 230

gesture 210 – 216
ggplot2 see plotting
Github see reproducible research

help 21 – 22
Helmert coding see contrast coding
heteroskedasticity see assumptions
hierarchical linear models see mixed

models
histogram 19 – 20, 38 – 39, 53 – 54, 59, 61,

64, 67, 74 – 75, 88, 109 – 111, 129 – 130,
237 – 238

homoskedasticity see assumptions
hypothesis testing see null hypothesis

testing

iconicity 37 – 44, 105 – 116, 131 – 132,
134 – 139, 146 – 150, 180 – 184, 292

identity function 229 – 230
incomplete commands 2
independence assumption see assumptions
independent variable see predictor variable
indexing 9; by logical statement 11; by

position 9
individual differences 270 – 272
information density 150 – 151
installation, of packages 20 – 21
interactions 133 – 150, 155, 278; and

centering 134 – 138; categorical *

categorical interactions 139 – 145;
categorical * continuous interactions
134 – 138; continuous * continuous
interactions 146 – 150; higher–order
interactions 155

intercept 71 – 72; intercept placeholders
83 – 84; intercept-only models, 76 – 77,
83 – 84, 185 – 186, 188 – 189, 263

interquartile range (IQR) 59 – 60

joining data frames 41, 231

keyboard shortcuts 5, 6, 22 – 23, 50

lambda 219
least squares regression 75 – 77
levels 12 – 13
likelihood ratio test 228 – 229, 260 – 264, 270
linear models 69 – 85
linear transformations 86 – 102;

centering 86 – 88, 98 – 100, 138 – 139;
standardizing, 87 – 90, 98 – 101,
105 – 109, 147 – 148, 181, 188, 197

link function 229 – 230
loading data 16 – 17
log odds see logits
logarithms 90 – 98, 220
logical vectors see vectors
logistic regression 198 – 217; logistic

function 201 – 202; mixed logistic
regression 267 – 270

logit 202 – 204; back-transforming logits
202 – 204, 206, 209, 214 – 215

markdown 44 – 47
mathematical operations 2 – 4
maximum 8
mean 8, 54 – 57
median 8, 58 – 59
merging data frames see joining data

frames
minimum 8
missing values 13, 17, 43, 107, 141, 266
mixed models 232 – 273; mixed logistic

regression 267 – 270; mixed model
syntax 240 – 241

model comparison; against null model
76 – 77, 83 – 84, 185 – 186; via F-test
185 – 186; via likelihood ratio test
228 – 229, 260 – 264, 270

model fit 75 – 77
models 53, 57
multicollinearity see collinearity
multilevel models see mixed models

15034-2313q-3pass-r02.indd 305 10/3/2019 5:53:35 PM

306  Index

multiple comparisons 175 – 177
multiple regression 103 – 109
multiple testing see multiple comparisons
multiplication 3

naming conflicts 231, 251
negative binomial regression 227 – 229
nonlinear effects see polynomial regression
nonlinear transformations
normal distribution see distributions
normality assumption see assumptions
normalizing 101
null hypotheses 165 – 166
null hypothesis testing 157 – 170
null model 76 – 77, 83 – 84, 185 – 186,

188 – 189, 260 – 264, 270
numeric vectors see vectors

odds 202 – 203
open science see reproducible research
optimizer see convergence issues
OSF see reproducible research
outcome variable see response variable
overdispersion 227 – 229

p–values 167 – 169
packages 20 – 21
pairwise comparisons 186 – 188
parameters; of distributions 56; of

populations 57, 157
Pearson’s r 89 – 90, 160
percentile see quantile
piping 36 – 37
plotting; base R 19 – 20, 110 – 111;
ggplot2 34 – 36, 38, 42 – 44, 83, 96,
121, 151, 154, 183 – 184, 193 – 194, 196,
207, 215, 225

Poisson distribution see distributions
Poisson regression 218 – 229
polynomial regression 150 – 155
population 57, 157
power function 3
power see statistical power
pre-registration 48, 178, 278
predictions see fitted values
predictor variable 69 – 70
probability 53 – 54
probability density 56

Q-Q plot 110 – 112
quadratic regression see polynomial

regression
quantile 62
quitting R 17

R objects 5 – 6
R scripts 4 – 5
R-squared 75 – 77; adjusted 115 – 116; for

mixed models 264
random effects 234 – 244; correlations of

238 – 241, 243, 259 – 260, 265 – 266;
random intercepts 234 – 244; random
slopes 234 – 244, 257 – 260

range 8, 58 – 59
reaction times 90 – 98
readr package 28 – 30
reference level see contrast coding
regression see linear model
reproducible research 47 – 50, 279 – 280
researcher degrees of freedom 48
residual plot 110 – 112
residuals 72 – 74, 79 see also assumptions
response variable 69 – 70
rounding 106, 108
rows 13 – 15

S-shape curves 152 – 153
sample size 115, 159, 162 – 163, 174 – 175,

177 – 178, 245
sampling 157 – 158
saving workspace 17
scatterplot 34, 70, 73, 75 – 76, 78, 87, 90,

96, 102, 110 – 112, 118, 130,
134, 137

scientific notation 180, 209
seed values 113, 172 – 173, 246
sequence 7
shortcuts see keyboard shortcuts
shrinkage 270 – 272
significance testing see null hypothesis

testing
skew 90 – 91
slope 71 – 72
square root function 4
squaring 3
standard deviation 8, 55 – 57
standard error 162 – 165; of regression

coefficients 180 – 183
standardized measures of effect size

159 – 162
standardizing see linear transformations
statistical power 171 – 175
stepwise regression 276 – 277
stopping rules 177 – 178
subtraction 2
sum coding see contrast coding
sum of squares 75 – 77
summary statistics 8
swirl 24

15034-2313q-3pass-r02.indd 306 10/3/2019 5:53:35 PM

Index  307

t-tests 166 – 173, 292 – 295; one–sample
t-test 292 – 293; paired t-test 293 – 295;
t-distribution 167 – 168; t-values
166 – 167; unpaired t-test 292

tab-delimited files 18 – 19
themes 39
tibbles 28 – 30
tidyverse package xiv, 27 – 46
treatment coding see contrast coding
Type I and Type II errors 171 – 177
Type M error 174
Type S error 174
typos 23

uniform distribution see distributions

variance inflation factors see
collinearity

vectors 7; character vectors 11 – 12;
concatening vectors 7; factor
vectors 12 – 13; length of 7;
logical vectors 10 – 11, 141;
numeric vectors 7 – 8

Wald test 270
word frequency 90 – 98
word frequency effects 69 – 70
working directory 16 – 17
workspace 17

z-scoring see standardizing

15034-2313q-3pass-r02.indd 307 10/3/2019 5:53:35 PM

%>% 36 – 37, 40, 43 – 44, 51 – 52, 83, 96,
99, 100 – 101, 105 – 108, 120 – 122, 125,
127 – 128, 136, 138 – 139, 140 – 142,
144 – 145, 147 – 148, 151, 154, 162, 181,
183 – 184, 193 – 194, 196, 215, 225, 251,
294

%in% 41 – 42, 51, 65, 120, 136, 162, 189,
222

abs() 4, 188
all_fit() 269
anova() 185 – 186, 188 – 189, 261 – 262
apropos() 21 – 22
arrange() 33, 65 – 66, 183, 193,
as_tibble() 28, 215
as.character() 12
as.factor() 12
as.logical() 12
as.numeric() 12

bind_cols() 215
binom.test() 296

c() 7, 11, 13 – 14, 24 – 26, 42 – 43, 51, 66,
93, 110 – 112, 120, 124, 129, 136, 143,
162, 170, 189, 290 – 291, 296 – 297

cbind() 192, 195
chisq.test() 297 – 299
citation() 21
class() 7, 11, 12, 126, 213
coef() 80 – 81, 84, 256 – 257, 259 – 260
cohen.d() 162, 169,
colnames() 14
complete.cases() 43, 141
contr.helmert() 130 – 131
contr.sum() 126 – 127, 145
contr.treatment() 126, 128
contrasts() 126 – 127, 145,
coord_flip() 183
cor() 100, 113, 162, 170
count() 43 – 44, 140 – 141

data.frame() 14 – 15
desc() 33, 66
diff() 8

emmeans() 187
exp() 93, 98, 223 – 224,

facet_wrap() 131
factor() 124, 126, 145, 183 – 184, 193,

213, 268, 299
filter() 30 – 32, 36, 42 – 44, 50 – 52, 65,

120, 136, 141, 147, 162, 183, 221 – 222,
294

fitted() 79 – 81, 111, 122, 129
fixef() 255, 263 – 265
format.pval() 180 – 181, 184

geom_boxplot() 42 – 43, 121
geom_density() 67 – 68, 121, 131
geom_errorbar() 193 – 194, 215
geom_histogram() 38, 67
geom_hline() 85, 183
geom_point() 34 – 36, 83, 151, 154,

183, 193 – 194, 207, 215,
geom_text() 35 – 36, 95 – 96, 196, 225,
geom_vline() 38 – 39, 67
getwd() 16 – 17, 20
ggplot() 34 – 36, 38, 42 – 44, 83, 96,

121, 151, 154, 183 – 184, 193 – 194, 196,
207, 215, 225

ggsave() 36, 46
gl() 246, 252
glance() 83, 85, 100, 106, 108,

116 – 117, 186, 188
glm.nb() 227 – 228
glm() 204 – 205, 208, 213, 222, 226, 299
glmer() 266 – 269
glmerControl() 269
grid.arrange() 36
group_by() 51 – 52, 120, 127, 132, 144, 151

Index of R Functions

15034-2313q-3pass-r02.indd 308 10/3/2019 5:53:35 PM

Index of R Functions  309

head() 17, 20, 22, 25 – 26, 28, 50, 61, 78,
79, 122, 195, 208, 224, 251, 265

help() 21
hist() 20, 61 – 62, 64, 111, 129,

ifelse() 51 – 52, 123, 156, 189,
293 – 294

install.packages() 20
is.na() 43 – 44, 141

left_join() 41, 131, 231
length() 7, 247 – 248, 250, 253, 297
levels() 13, 122, 124, 209, 213, 270
library() 20
list.files() 16 – 17, 20
lm() 79 – 80, 82, 84 – 85, 97, 99 – 101,

106 – 108, 113 – 114, 122 – 123, 125,
127 – 128, 136 – 139, 141 – 142, 145,
147 – 148, 153, 156, 181, 184 – 185,
188 – 189, 195, 292 – 293, 295, 299 – 300

lmer() 253 – 264
log() 92 – 93, 95
log10() 85, 92, 95, 106, 195
ls() 7, 20

max() 8, 65
mean() 8, 12, 14, 24 – 25, 62 – 63, 66, 84,

98, 120, 127, 139, 144, 148, 151, 153
median() 8, 51, 67
min() 8, 65
mixed() 263 – 264
mode() 7
mutate() 32 – 33, 51 – 52, 95, 98 – 99,

106 – 109, 123 – 124, 126 – 128, 139, 145,
147 – 148, 153 – 154, 156, 181, 183 – 184,
188, 189, 191, 193, 194, 213, 215, 231,
251 – 253, 268, 294, 299

ncol() 14, 28, 141
nrow() 14, 28, 141

odTest() 228 – 229
outer() 299

p.adjust() 176 – 177, 179
packageVersion() 21
par() 110 – 112, 129 – 130
plogis() 201 – 202, 206, 209, 214 – 215
plot() 24, 79, 111 – 112, 129, 152, 170,

230
points() 24
predict() 81, 122 – 123, 129, 143 – 144,

154, 190 – 192, 195, 214 – 215, 223 – 224
print() 40, 105, 162, 181, 184
prop.table() 211 – 212

qqline() 111 – 112, 129 – 130
qqnorm() 111 – 112, 129 – 130
quantile() 62 – 63, 66 – 67

r.squaredGLMM() 264
R.Version() 21
ranef() 257
range() 8, 38, 65, 107, 141, 221 – 222
read_csv() 29
read_delim() 29 – 30
read.csv() 16 – 17, 28, 29, 50
read.table() 18 – 19
readLines() 18
relevel() 124
rename() 32, 41, 294
rep() 143, 169, 247, 249 – 250, 252, 291
residuals() 79 – 80, 85, 110, 129,
rexp() 247, 252
rnorm() 62, 64, 77 – 78, 111 – 113,

169 – 170, 172 – 173, 249 – 250, 252, 290
round() 106 – 108, 128 – 129, 180 – 181,

184, 212 – 213, 247, 252
rowSums() 212, 299
rpois() 230
runif() 60 – 61

sample_n() 41
scale_fill_brewer() 121
scale_x_continuous() 215
scale() 99, 101, 108, 181, 188
sd() 8, 62 – 63, 66, 98, 120, 148
segments() 24
select() 30 – 32, 38, 40, 50 – 52, 98 – 101,

106, 107, 108, 122 – 123, 125, 127 – 128,
131 – 132, 136, 138 – 139, 141 – 142, 145,
147 – 148, 154, 231, 251 – 253,

seq() 21, 81, 195, 206, 264
set.seed() 113, 172 – 173, 246, 252
setwd() 45, 48
sort() 129, 135, 154, 190
sqrt() 4
str()15, 255
sum() 8, 52, 85, 141
summarize() 51 – 52, 120, 127, 132,

144, 151
summary() 15, 80, 85, 227 – 228,

254 – 255, 257 – 260, 269
swirl() 24

t.test() 170, 172 – 173, 291 – 294, 299
table() 120, 135 – 136, 189, 208,

211 – 212, 230, 295, 298
tail() 17

15034-2313q-3pass-r02.indd 309 10/3/2019 5:53:35 PM

310  Index of R Functions

theme_minimal() 38 – 39, 42 – 44, 83,
96, 121, 151, 154, 183, 193 – 194, 196,
207, 215, 225

tibble() 81 – 82, 122, 129, 143, 154,
169, 190, 191, 195, 206, 214, 223 – 224,
248, 252, 291

tidy() 82, 97, 99 – 101, 106 – 108,
113 – 114, 122, 128, 136, 138 – 139,
141 – 142, 145, 147 – 148, 154, 156, 181,
183 – 184, 189, 205, 208 – 209, 213, 222,
226 – 227, 292 – 293, 295, 299

unique() 122, 127, 129, 135,
154, 190

vif() 114

with() 100,
189, 298

xlab() 194, 215

ylab() 194, 215

15034-2313q-3pass-r02.indd 310 10/3/2019 5:53:36 PM

